Skip to main content
Log in

Hydrogen peroxide-induced apoptosis in human hepatoma cells is mediated by CD95(APO-1/Fas) receptor/ligand system and may involve activation of wild-type p53

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) play an important role in cell death induced by many different stimuli. Direct exposure of human hepatoma cell line SMMC-7221 to hydrogen peroxide (H2O2) can induce apoptosis characterized by morphological evidence and fragmentation of DNA assayed by terminal deoxynucleotidyl transferase assay (TUNEL assay). Analysis of flow cytometry indicated that H2O2 can decrease the level of CD95(APO-1/Fas), and it is confirmed that H2O2 can also activate the differential expression of some specific gene such as p53 by means of RT-PCR technique. The results indicated that CD95 signal transduction system may be involved in the H2O2-induced apoptosis, and can regulate some specific genes associated with apoptosis in transcription and translation levels such as p53.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Halliwell B & Gutteridge JMC (1990) Methods Enzymol. 186: 1–85

    Google Scholar 

  2. Sakagami H, Kuribayashi N, Iida M, Hagiwara T, Takahashi H, Yoshida H, Shiota F, Ohata H, Momose K & Takeda M (1996) Life Sci. 58: 1131–1138

    Google Scholar 

  3. Fisher DE (1994) Cell 78: 539–542

    Google Scholar 

  4. Lowe SW, Ruley HE, Jacks T & Housman DE (1993) Cell 74: 957–967

    Google Scholar 

  5. Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS & Vogelstein B (1992) Cell 71: 587–597

    Google Scholar 

  6. Lowe SW, Schmitt EM, Smith SW, Osborne BA & Jacks T (1993) Nature 362: 847–849

    Google Scholar 

  7. Bates S & Vousden KH (1996) Curr. Opin. Genet. Dev. 6: 12–19

    Google Scholar 

  8. Barak Y, Juven T, Haffner R & Oren M (1993) EMBO J. 12: 461–468

    Google Scholar 

  9. Chen CY, Oliner JD, Zhan Q, Fornace AJ, Vogelstein B & Kastan MB (1994) Proc. Natl. Acad. Sci. USA 91: 2684–2688

    Google Scholar 

  10. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW & Vogelstein B (1993) Cell 75: 817–825

    Google Scholar 

  11. Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T, Roth JA, Deisseroth AB, Zhang WW, Kruzel E & Radinsk R (1995) Mol. Cell Biol. 15: 3032–3040

    Google Scholar 

  12. Itoh N, Yonehara S, Ishii A, Yonehara M, Mizuchima SI, Sameshima M, Hase A, Seto Y & Nagata S (1991) Cell 66: 233–243

    Google Scholar 

  13. Smith CA, Farrah T & Goodwin RG (1994) Cell 76: 959–962

    Google Scholar 

  14. Lowin B, Hahne M, Mattmann C & Tschopp J (1994) Nature 370: 650–652

    Google Scholar 

  15. Galle PR, Hofmann WJ, Walczak H, Schaller H, Otto G, Stremmel W, Krammer PH & Runkel L (1995) J. Exp. Med. 182: 1123–1230

    Google Scholar 

  16. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T & Nagata S (1993) Nature 364: 806–809

    Google Scholar 

  17. Dong SC, Ren JX, Yang XP, Gu JX & Chen HL (1994) Acta Biochem. Biophys. Sin. 26: 535–540

    Google Scholar 

  18. Li J, Zheng Y, Zheng RL, Liu ZM & Jia ZJ (1995) Chinese Pharmac. J. 30: 269–271

    Google Scholar 

  19. Hebert L, Pandey S & Wang E (1994) Exp. Cell Res. 210: 10–18

    Google Scholar 

  20. Schulz JB, Weller M &Klockgether T 1996 J.Neurosci. 16: 4696–470

    Google Scholar 

  21. Cesarone CF, Bolognesi C & Santi L (1979) Anal. Biochem. 100: 188–191

    Google Scholar 

  22. Negoescu A, Lorimier P, Labat-Moleur F, Droutet C, Robert C, Guillermet C, Brambilla C & Brambilla E (1996). J. Histochem. Cytochem. 44: 959–968

    Google Scholar 

  23. Muller M, Strand S, Hug H, Heinemann EM, Walczak H, Hofmann WJ, Stremmel W, Krammer PH & Galle PR (1997) J. Clin. Invest. 99: 403–413

    Google Scholar 

  24. Bouillet P, Oulad-Abdelghani M, Vicaire S, Garnier J-M, Schuhbaur B, Dolle P & Chambon P (1995) Dev. Biol. 170: 420–433

    Google Scholar 

  25. Lafon C, Mazars P, Guerrin M, Barboule N, Charcosset JY & Valette A (1995) Biochim. Biophys. Acta 1266: 288–295

    Google Scholar 

  26. Gansauge S, Gansauge F, Nussler AK, Rau B, Poch B, Schoenberg MH & Beger HG (1997) FEBS Lett. 410: 160–164

    Google Scholar 

  27. Krapp A, Knofler M, Fruitiger S, Hughes GJ, Hagenbuchle O & Wellauer PK (1996) EMBO J. 15: 4317–4329

    Google Scholar 

  28. Liang P & Pardee AB (1992) Science 257: 967–971

    Google Scholar 

  29. Sokolov BP & Prockop DJ (1994) Nucleic Acid Res. 22: 4009–4015

    Google Scholar 

  30. Liang P, Averboukh L & Pardee AB (1993) Nucleic Acid Res. 21: 3269–3275

    Google Scholar 

  31. Gardner AM, Xu FH, Fady C, Jacoby FJ, Duffey DC, Tu YP & Lichtenstein A (1997) Free Rad. Biol. Med. 22: 73–83

    Google Scholar 

  32. Evans CA, Owen-Lynch JP, Whetton AD & Dive C (1993) Cancer Res. 53: 1735–1738

    Google Scholar 

  33. Landowski TH, Gleason-Guzman MC & Daton WS (1997) Blood 89: 1854–1861

    Google Scholar 

  34. Chomczynski P & Sacchi N (1987) Anal. Biochem. 162: 156–159

    Google Scholar 

  35. Lowe SW, Schmitt EM, Smith SW, Osborne BA & Jacks T (1993) Nature 362: 847–849

    Google Scholar 

  36. Friesen C, Herr I, Krammer PH & Debatin KM (1996) Nat. Med. 2: 574–580

    Google Scholar 

  37. Inazawa J, Itoh H, Abe T & Nagata S (1992) Genomics 14: 821–822

    Google Scholar 

  38. Krammer PH, Behrmann I, Daniel P, Dhein J & Debatin KM (1994) Curr. Opin. Immunol. 6: 279–289

    Google Scholar 

  39. William GT & Smith CA (1993) Cell 74: 777–779

    Google Scholar 

  40. Basset P, Bellocq JP, Wolf C, Stoll I, Hutin P, Limacher JM, Podhajcer OP, Chenard MP, Rio MC & Chambon P (1990) Nature 348: 699–704

    Google Scholar 

  41. Hollstein M, Sidransky D, Vogelstein B & Harris CC (1991) Science 253: 49–53

    Google Scholar 

  42. Kern SE, Pietenpol JA, Thiagalingam S, Seymour A, Kinzler KW & Volgelstein B (1992) Nature 256: 827–830

    Google Scholar 

  43. Shaw P, Bovey R, Tardy S, Sahli R, Sordat B & Costa J (1992) Proc. Natl. Acad. Sci. USA 89: 4495–4499

    Google Scholar 

  44. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML & Wyllie AH (1993) Nature 362: 849–852

    Google Scholar 

  45. Wang XW, Yeh H, Schaeffer L, Roy R, Moncollin V, Egly JM, Wang Z, Friedberg EC, Friedberg EC, Evans MK, Taffe BG, Bohr VA, Weeda G, Hoeijmakers JHJ, Forrecter K & Harris CC (1995) Nature Genet. 10: 188–195

    Google Scholar 

  46. Lane DP (1992) Nature 358: 15–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C., Li, J., Zheng, R. et al. Hydrogen peroxide-induced apoptosis in human hepatoma cells is mediated by CD95(APO-1/Fas) receptor/ligand system and may involve activation of wild-type p53. Mol Biol Rep 27, 1–11 (2000). https://doi.org/10.1023/A:1007003229171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007003229171

Navigation