Molecular Properties and Regulation of G-Protein-Coupled Receptors

https://doi.org/10.1016/S0079-6603(08)60049-5Get rights and content

Publisher Summary

This chapter discusses the molecular properties and regulation of G-protein coupled receptors. For many hormones, neurotransmitters, and chemotactic factors, signal transduction is accomplished through the interaction of bioactive molecules (agonists), with cell surface receptors, that couple to one or more species of heterotrimeric guanine-nucleotide-binding regulatory proteins (G-proteins). Receptors that share this mechanism of signal transduction have been termed as G-protein coupled receptors (GPCRs). These receptors play a critical role in many physiological processes, and have been targets for drug intervention and therapy in a wide range of diseases. However, the receptor, the inactive G-protein complex composed of three subunits (α, β, and γ), and the inactive effector enzymes are all associated, with the plasma membrane. The binding of a hormone or neurotransmitter triggers the association of the G-protein complex, with the agonist-occupied receptor. Agonist occupation of a GPCR leads to the generation of one or more intracellular second messengers, as a consequence of the activation of one or more effector enzymes, such as adenylyl cyclase, phospholipases A, C, or D, phosphodiesterases, and ion channels in specialized cells.

References (215)

  • L. Birnbaumer

    Cell

    (1992)
  • M. Rodbell

    Curr. Top. Cell. Regul.

    (1992)
  • T. Kubo et al.

    FEBS Lett.

    (1986)
  • R. Henderson et al.

    Ultramicroscopy

    (1986)
  • M.L. Applebury et al.

    Vision Res.

    (1986)
  • H.-Y. Wang et al.

    JBC

    (1989)
  • D.R. Sibley et al.

    Trends Pharmacol. Sci.

    (1992)
  • P.P.A. Humphrey et al.

    Trends Pharmacol. Sci.

    (1993)
  • M.S. Beer et al.

    Trends Pharmacol. Sci.

    (1993)
  • B.K. Kobilka et al.

    JBC

    (1987)
  • C.D. Strader et al.

    JBC

    (1988)
  • F.-Z. Chung et al.

    FEBS Lett.

    (1987)
  • P. Muzzin et al.

    JBC

    (1991)
  • C.M. Fraser et al.

    JBC

    (1989)
  • I. Gantz et al.

    JBC

    (1992)
  • C.D. Strader et al.

    JBC

    (1991)
  • C.D. Strader et al.

    JBC

    (1989)
  • F.-Z. Chung et al.

    JBC

    (1988)
  • I. Ji et al.

    JBC

    (1991)
  • C.A.M. Curtis et al.

    JBC

    (1989)
  • E. Kurtenbach et al.

    JBC

    (1990)
  • M.F. Hibert et al.

    Trends Pharmacol. Sci.

    (1993)
  • J. Wess

    Trends Pharmacol. Sci.

    (1993)
  • M.A. Metcalf et al.

    Biochem. Pharmacol.

    (1992)
  • S.H. Buck et al.

    Trends Pharmacol. Sci.

    (1988)
  • T.M. Fong et al.

    JBC

    (1992)
  • K.J. Watling et al.

    Trends Pharmacol. Sci.

    (1993)
  • T.M. Fong et al.

    JBC

    (1992)
  • B.S. Sachais et al.

    JBC

    (1993)
  • J.H. Perlman et al.

    JBC

    (1992)
  • H.D. Perez et al.

    JBC

    (1993)
  • G.J. LaRosa et al.

    JBC

    (1992)
  • C.A. Hebert et al.

    JBC

    (1993)
  • M.A. Buck et al.

    BBRC

    (1990)
  • S. Kosugi et al.

    JBC

    (1992)
  • R.C. Rubenstein et al.

    JBC

    (1987)
  • C.D. Strader et al.

    JBC

    (1987)
  • W.P. Hausdorff et al.

    JBC

    (1990)
  • A. De Lean et al.

    JBC

    (1980)
  • B.F. O'Dowd et al.

    JBC

    (1988)
  • B.F. O'Dowd et al.

    JBC

    (1989)
  • Y.A. Ovchinnikov et al.

    FEBS Lett.

    (1988)
  • T.M. Savarese et al.

    JBC

    (1992)
  • M.E. Kennedy et al.

    JBC

    (1993)
  • A. Levitski et al.

    Annu. Rev. Cell. Biol.

    (1986)
  • A.G. Oilman

    ARB

    (1987)
  • L. Birnhaumer

    Annu. Rev. Pharmacol. Toxicol.

    (1990)
  • D.E. Clapham et al.

    Nature

    (1993)
  • C.A. Landis et al.

    Nature

    (1989)
  • T.M. Savarese et al.

    BJ

    (1992)
  • Cited by (0)

    View full text