Structural, Electrophysiological, Biochemical, and Pharmacological Properties of Neuroblastoma-Glioma Cell Hybrids in Cell Culture

https://doi.org/10.1016/S0074-7696(08)61948-8Get rights and content

Publisher Summary

This chapter discusses the structural, electrophysiological, biochemical and pharmacological properties of neuroblastoma-glioma cell hybrids in cell culture. Hybrid cells are formed by the fusion of two different cell types. The cells fused may be as different as those of humans and of mosquitos, as similar as cells from two strains of mice, or only clearly different in one gene or in the kind of tissue of the same animal they were derived from. Hybrids are prepared by fusion, e.g., of a mutant hamster cell line and a wild-type human cell line. If one selects for wild-type cells, the segregation of human chromosomes will provide hybrid cells that retain a single human chromosome, or part of one, carrying the gene that complements the hamster cell to a wild-type cell. This and similar methods are also used for the analysis of gene linkage. Other important applications of cell hybrids are the rescue of latent viruses and the genetic analysis of malignancy and of viral gene expression.

References (291)

  • T. Amano et al.

    Exp. Cell Res.

    (1974)
  • E. Bartels et al.

    Biochim. Biophys. Acta

    (1970)
  • A.J. Blume et al.

    J. Biol. Chem.

    (1975)
  • M. Brandt et al.

    FEBS Lett.

    (1976)
  • X.O. Breakefield

    Life Sci.

    (1976)
  • X.O. Breakefield et al.

    Brain Res.

    (1975)
  • A. Constantopoulos et al.

    Biochem. Biophys. Res. Commun.

    (1973)
  • B.M. Cox et al.

    Life Sci.

    (1975)
  • P. Cuatrecasas

    Biochem. Pharmacol.

    (1974)
  • W.L. Dewey et al.

    Life Sci.

    (1975)
  • A. Edström et al.

    Exp. Cell Res.

    (1974)
  • J.A. Ferrendelli et al.

    Biochem. Biophys. Res. Commun.

    (1970)
  • G.D. Fischbach

    Dev. Biol.

    (1972)
  • P. Gerber

    Virology

    (1966)
  • A.G. Gilman et al.

    J. Biol. Chem.

    (1973)
  • R.J. Gullis et al.

    FEBS Lett.

    (1975)
  • B. Hamprecht et al.

    FEBS Lett.

    (1973)
  • B. Hamprecht et al.

    FEBS Lett.

    (1973)
  • B. Hamprecht et al.

    FEBS Lett.

    (1974)
  • G. ARgren et al.

    J. Cell. Physiol.

    (1971)
  • T. Amano et al.

    Proc. Natl. Acad. Sci. U.S.A.

    (1972)
  • M.S. Amer et al.

    Nature (London)

    (1975)
  • C.M. Armstrong et al.

    J. Gen. Physiol.

    (1965)
  • C.F. Asnes et al.

    Fed. Proc., Fed. Am. Soc. Exp. Biol.

    (1974)
  • G. Augusti-Tocco et al.

    Proc. Natl. Acad. Sci. U.S.A.

    (1969)
  • G. Barski et al.

    C. R. Hebd. Seances Acad. Sci.

    (1960)
  • M.P. Bear et al.

    Fed. Proc., Fed. Am. Soc. Exp. Biol.

    (1975)
  • P. Benda et al.

    J. Cell. Physiol.

    (1971)
  • P. Benda et al.

    Science

    (1968)
  • M.R. Bennett

    J. Physiol. (London)

    (1967)
  • F. Bergmann

    Pahlavi Med. J.

    (1975)
  • A. Blume et al.

    Proc. Natl. Acad. Sci. U.S.A.

    (1970)
  • A.J. Blume et al.

    Proc. Natl. Acad. Sci. U.S.A.

    (1973)
  • A.F. Bradbury et al.

    Nature (London)

    (1976)
  • Bradley, P. B. (1975). Abstr. Satellite Symp. Int. Congr. Pharmacol., 6th 1975, p....
  • P.B. Bradley et al.

    J. Physiol. (Paris)

    (1974)
  • P.B. Bradley et al.

    Br. J. Pharmacol.

    (1974)
  • M. Brandt et al.

    Nature (London)

    (1976)
  • M.B. Bunge

    J. Cell Biol.

    (1973)
  • M.M. Burger et al.

    Philos. Trans. R. Soc. London, Ser. B

    (1977)
  • W. Burke et al.

    J. Physiol. (London)

    (1953)
  • J.F.J. Cade

    Med. J. Aust.

    (1949)
  • D.H. Carver et al.

    Science

    (1968)
  • W.A. Catterall et al.

    Proc. Natl. Acad. Sci. U.S.A.

    (1973)
  • C.C. Chang et al.

    Arch. Int. Pharmacodyn. Ther.

    (1963)
  • P. Claude et al.

    J. Cell Biol.

    (1970)
  • H.O.J. Collier et al.

    Nature (London)

    (1975)
  • H.O.J. Collier et al.

    Nature (London)

    (1974)
  • H.O.J. Collier et al.

    Nature (London)

    (1974)
  • H.R. Colten et al.

    Science

    (1972)
  • Cited by (338)

    • Mouse Neuroblastoma CB<inf>1</inf> Cannabinoid Receptor-Stimulated [<sup>35</sup>S]GTPɣS Binding: Total and Antibody-Targeted Gα Protein-Specific Scintillation Proximity Assays

      2017, Methods in Enzymology
      Citation Excerpt :

      Morphological differentiation may also be induced by growth in BUdR or by inhibiting DNA synthesis with agents such as cytosine arabinoside, FUdR, and mitomycin C (Denis-Donini et al., 1978; Schubert et al., 1971). Agents that increase intracellular cyclic AMP also promoted morphological differentiation in neuroblastoma and hybrid cells (reviewed by Hamprecht, 1977; Nirenberg et al., 1983; Prasad, 1975). Such agents include analogs of cyclic AMP (dibutyryl-cyclic AMP (db-cAMP), 8-bromo-cyclic AMP), cyclic AMP phosphodiesterase inhibitors (3-isobutyl-1-methylxanthine, theophylline, Ro20-1724), and activators of adenylyl cyclase (forskolin).

    • Liposome-entrapped GABA modulates the expression of nNOS in NG108-15 cells

      2016, Journal of Neuroscience Methods
      Citation Excerpt :

      Additionally, these rats treated with GL presented blunted tachycardia in stress trials and showed reduced anxiety as revealed by elevated plus maze suggesting a functional change in the neuronal circuitry involved in these responses. The neuroblastoma X glioma hybrid NG108-15 cell line (Hamprecht, 1977) demonstrates neuronal properties and has been extensively used as an in-vitro neuronal model (Cargill and Thibault, 1996; Chemin et al., 2002). NG108-15 express both GABAAR (Searles and Singer, 1988) and nNOS (Sharma et al., 2011) and thus represent an ideal neuronal cell line to study the interaction between these two mediators.

    View all citing articles on Scopus
    View full text