Skip to main content
Log in

Blocking LINGO-1 as a Therapy to Promote CNS Repair: From Concept to the Clinic

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

LINGO-1 is a leucine-rich repeat and Ig domain-containing, Nogo receptor interacting protein, selectively expressed in the CNS on both oligodendrocytes and neurons. Its expression is developmentally regulated, and is upregulated in CNS diseases and injury. In animal models, LINGO-1 expression is upregulated in rat spinal cord injury, experimental autoimmune encephalomyelitis, 6-hydroxydopamine neurotoxic lesions and glaucoma models. In humans, LINGO-1 expression is increased in oligodendrocyte progenitor cells from demyelinated white matter of multiple sclerosis post-mortem samples, and in dopaminergic neurons from Parkinson’s disease brains. LINGO-1 negatively regulates oligodendrocyte differentiation and myelination, neuronal survival and axonal regeneration by activating ras homolog gene family member A (RhoA) and inhibiting protein kinase B (Akt) phosphorylation signalling pathways. Across diverse animal CNS disease models, targeted LINGO-1 inhibition promotes neuron and oligodendrocyte survival, axon regeneration, oligodendrocyte differentiation, remyelination and functional recovery. The targeted inhibition of LINGO-1 function presents a novel therapeutic approach for the treatment of CNS diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meissner WG, Frasier M, Gasser T, et al. Priorities in Parkinson’s disease research. Nat Rev Drug Discov. 2011;10(5):377–93.

    Article  CAS  PubMed  Google Scholar 

  2. Miller RG, Mitchell JD, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev. 2012;(3):CD001447.

  3. Schmier JK, Halpern MT, Jones ML. The economic implications of glaucoma: a literature review. Pharmacoeconomics. 2007;25(4):287–308.

    Article  PubMed  Google Scholar 

  4. Dutta R, Trapp BD. Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol. 2011;93(1):1–12.

    Article  PubMed  Google Scholar 

  5. Chen Y, Aulia S, Li L, et al. AMIGO and friends: an emerging family of brain-enriched, neuronal growth modulating, type I transmembrane proteins with leucine-rich repeats (LRR) and cell adhesion molecule motifs. Brain Res Rev. 2006;51(2):265–74.

    Article  CAS  PubMed  Google Scholar 

  6. Kuja-Panula J, Kiiltomaki M, Yamashiro T, et al. AMIGO, a transmembrane protein implicated in axon tract development, defines a novel protein family with leucine-rich repeats. J Cell Biol. 2003;160(6):963–73.

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen-Ba-Charvet KT, Picard-Riera N, Tessier-Lavigne M, et al. Multiple roles for slits in the control of cell migration in the rostral migratory stream. J Neurosci. 2004;24(6):1497–506.

    Article  CAS  PubMed  Google Scholar 

  8. Fournier AE, GrandPre T, Strittmatter SM. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature. 2001;409(6818):341–6.

    Article  CAS  PubMed  Google Scholar 

  9. McGee AW, Strittmatter SM. The Nogo-66 receptor: focusing myelin inhibition of axon regeneration. Trends Neurosci. 2003;26(4):193–8.

    Article  CAS  PubMed  Google Scholar 

  10. Mi S, Lee X, Shao Z, et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci. 2004;7(3):221–8.

    Article  CAS  PubMed  Google Scholar 

  11. Mi S, Miller RH, Lee X, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci. 2005;8(6):745–51.

    Article  CAS  PubMed  Google Scholar 

  12. Mi S, Hu B, Hahm K, et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med. 2007;13(10):1228–33.

    Article  CAS  PubMed  Google Scholar 

  13. Mi S, Miller RH, Tang W, et al. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann Neurol. 2009;65(3):304–15.

    Article  CAS  PubMed  Google Scholar 

  14. Inoue H, Lin L, Lee X, et al. Inhibition of the leucine-rich repeat protein LINGO-1 enhances survival, structure, and function of dopaminergic neurons in Parkinson’s disease models. Proc Natl Acad Sci USA. 2007;104(36):14430–5.

    Article  CAS  PubMed  Google Scholar 

  15. Fu QL, Hu B, Wu W, et al. Blocking LINGO-1 function promotes retinal ganglion cell survival following ocular hypertension and optic nerve transection. Invest Ophthalmol Vis Sci. 2008;49(3):975–85.

    Article  PubMed  Google Scholar 

  16. Lee X, Yang Z, Shao Z, et al. NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation and myelination. J Neurosci. 2007;27(1):220–5.

    Article  CAS  PubMed  Google Scholar 

  17. Fu QL, Hu B, Li X, et al. LINGO-1 negatively regulates TrkB phosphorylation after ocular hypertension. Eur J Neurosci. 2010;31(6):1091–7.

    Article  PubMed  Google Scholar 

  18. Fu QL, Li X, Yip HK, et al. Combined effect of brain-derived neurotrophic factor and LINGO-1 fusion protein on long-term survival of retinal ganglion cells in chronic glaucoma. Neuroscience. 2009;162(2):375–82.

    Article  CAS  PubMed  Google Scholar 

  19. Ji B, Li M, Wu WT, et al. LINGO-1 antagonist promotes functional recovery and axonal sprouting after spinal cord injury. Mol Cell Neurosci. 2006;33(3):311–20.

    Article  CAS  PubMed  Google Scholar 

  20. Mi S, Sandrock A, Miller RH. LINGO-1 and its role in CNS repair. Int J Biochem Cell Biol. 2008;40(10):1971–8.

    Article  CAS  PubMed  Google Scholar 

  21. Rudick RA, Mi S, Sandrock AW Jr. LINGO-1 antagonists as therapy for multiple sclerosis: in vitro and in vivo evidence. Expert Opin Biol Ther. 2008;8(10):1561–70.

    Article  CAS  PubMed  Google Scholar 

  22. Barrette B, Vallieres N, Dube M, et al. Expression profile of receptors for myelin-associated inhibitors of axonal regeneration in the intact and injured mouse central nervous system. Mol Cell Neurosci. 2007;34(4):519–38.

    Article  CAS  PubMed  Google Scholar 

  23. Carim-Todd L, Escarceller M, Estivill X, et al. LRRN6A/LERN1 (leucine-rich repeat neuronal protein 1), a novel gene with enriched expression in limbic system and neocortex. Eur J Neurosci. 2003;18(12):3167–82.

    Article  PubMed  Google Scholar 

  24. Okafuji T, Tanaka H. Expression pattern of LINGO-1 in the developing nervous system of the chick embryo. Gene Expr Patterns. 2005;6(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  25. Compston A, Coles A. Multiple sclerosis. Lancet. 2002;359(9313):1221–31.

    Article  PubMed  Google Scholar 

  26. Hauser SL, Oksenberg JR. The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron. 2006;52(1):61–76.

    Article  CAS  PubMed  Google Scholar 

  27. Sawcer S, Hellenthal G, Pirinen M, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476(7359):214–9.

    Article  CAS  PubMed  Google Scholar 

  28. Franklin RJ. Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci. 2002;3(9):705–14.

    Article  CAS  PubMed  Google Scholar 

  29. Franklin RJ. Remyelination of the demyelinated CNS: the case for and against transplantation of central, peripheral and olfactory glia. Brain Res Bull. 2002;57(6):827–32.

    Article  PubMed  Google Scholar 

  30. Franklin RJ, Hinks GL. Understanding CNS remyelination: clues from developmental and regeneration biology. J Neurosci Res. 1999;58(2):207–13.

    Article  CAS  PubMed  Google Scholar 

  31. Chang A, Tourtellotte WW, Rudick R, et al. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med. 2002;346(3):165–73.

    Article  PubMed  Google Scholar 

  32. Lau LW, Keough MB, Haylock-Jacobs S, et al. Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Ann Neurol. 2012;72(3):419–32.

    Article  CAS  PubMed  Google Scholar 

  33. Kotter MR, Li WW, Zhao C, et al. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci. 2006;26(1):328–32.

    Article  CAS  PubMed  Google Scholar 

  34. Fancy SP, Baranzini SE, Zhao C, et al. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev. 2009;23(13):1571–85.

    Article  CAS  PubMed  Google Scholar 

  35. Back SA, Tuohy TM, Chen H, et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med. 2005;11(9):966–72.

    CAS  PubMed  Google Scholar 

  36. Zhang Y, Argaw AT, Gurfein BT, et al. Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination. Proc Natl Acad Sci USA. 2009;106(45):19162–7.

    Article  CAS  PubMed  Google Scholar 

  37. Chan JR, Watkins TA, Cosgaya JM, et al. NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron. 2004;43(2):183–91.

    Article  CAS  PubMed  Google Scholar 

  38. Mi S, Cadavid D. A novel CNS remyelination and repair therapy by blocking LINGO-1 pathway. In: 26th congress of european committee for treatment and research in multiple sclerosis, Gothenburg, 12–16 Oct 2010, p. P731.

  39. Papadopoulos D, Pham-Dinh D, Reynolds R. Axon loss is responsible for chronic neurological deficit following inflammatory demyelination in the rat. Exp Neurol. 2006;197(2):373–85.

    Article  CAS  PubMed  Google Scholar 

  40. Pepinsky RB, Shao Z, Ji B, et al. Exposure levels of anti-LINGO-1 Li81 antibody in the central nervous system and dose-efficacy relationships in rat spinal cord remyelination models after systemic administration. J Pharmacol Exp Ther. 2011;339(2):519–29.

    Article  CAS  PubMed  Google Scholar 

  41. Pallini R. Anatomy of “regenerating axons”. Science. 1998;280(5361):181–2.

    Article  CAS  PubMed  Google Scholar 

  42. Park JB, Yiu G, Kaneko S, et al. A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron. 2005;45(3):345–51.

    Article  CAS  PubMed  Google Scholar 

  43. Shao Z, Browning JL, Lee X, et al. TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron. 2005;45(3):353–9.

    Article  CAS  PubMed  Google Scholar 

  44. Lv J, Xu RX, Jiang XD, et al. Passive immunization with LINGO-1 polyclonal antiserum afforded neuroprotection and promoted functional recovery in a rat model of spinal cord injury. Neuroimmunomodulation. 2010;17(4):270–8.

    Article  CAS  PubMed  Google Scholar 

  45. Ericson C, Georgievska B, Lundberg C. Ex vivo gene delivery of GDNF using primary astrocytes transduced with a lentiviral vector provides neuroprotection in a rat model of Parkinson’s disease. Eur J Neurosci. 2005;22(11):2755–64.

    Article  PubMed  Google Scholar 

  46. Hanke M, Farkas LM, Jakob M, et al. Heparin-binding epidermal growth factor-like growth factor: a component in chromaffin granules which promotes the survival of nigrostriatal dopaminergic neurones in vitro and in vivo. Neuroscience. 2004;124(4):757–66.

    Article  CAS  PubMed  Google Scholar 

  47. Iwakura Y, Piao YS, Mizuno M, et al. Influences of dopaminergic lesion on epidermal growth factor-ErbB signals in Parkinson’s disease and its model: neurotrophic implication in nigrostriatal neurons. J Neurochem. 2005;93(4):974–83.

    Article  CAS  PubMed  Google Scholar 

  48. Seroogy KB, Numan S, Gall CM, et al. Expression of EGF receptor mRNA in rat nigrostriatal system. Neuroreport. 1994;6(1):105–8.

    Article  CAS  PubMed  Google Scholar 

  49. Wang X, McCullough KD, Franke TF, et al. Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J Biol Chem. 2000;275(19):14624–31.

    Article  CAS  PubMed  Google Scholar 

  50. Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci. 1995;36(5):774–86.

    CAS  PubMed  Google Scholar 

  51. Tran J. BIIB033 phase I study. In: Annual meeting of the American Academy of Neurology, New Orleans. 21–28 2012, p. P02–021.

  52. Bongioanni P, Reali C, Sogos V. Ciliary neurotrophic factor (CNTF) for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev. 2004;(3):CD004302.

  53. Lavail MM. Survival factors for treatment of retinal degenerative disorders: preclinical gains and issues for translation into clinical studies. Retina. 2005;25(8 Suppl.):S25–6.

    Article  PubMed  Google Scholar 

  54. Sahenk Z. Neurotrophins and peripheral neuropathies. Brain Pathol. 2006;16(4):311–9.

    Article  CAS  PubMed  Google Scholar 

  55. Sarchielli P, Gallai V. Nerve growth factor and chronic daily headache: a potential implication for therapy. Expert Rev Neurother. 2004;4(1):115–27.

    Article  CAS  PubMed  Google Scholar 

  56. Sherer TB, Fiske BK, Svendsen CN, et al. Crossroads in GDNF therapy for Parkinson’s disease. Mov Disord. 2006;21(2):136–41.

    Article  PubMed  Google Scholar 

  57. Tuszynski MH. Nerve growth factor gene therapy in Alzheimer disease. Alzheimer Dis Assoc Disord. 2007;21(2):179–89.

    Article  CAS  PubMed  Google Scholar 

  58. Williams BJ, Eriksdotter-Jonhagen M, Granholm AC. Nerve growth factor in treatment and pathogenesis of Alzheimer’s disease. Prog Neurobiol. 2006;80(3):114–28.

    Article  CAS  PubMed  Google Scholar 

  59. Woodruff RH, Fruttiger M, Richardson WD, et al. Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Mol Cell Neurosci. 2004;25(2):252–62.

    Article  CAS  PubMed  Google Scholar 

  60. Zazpe A, Del Rio J. Neurotrophins. II: therapeutic potential. Rev Med Univ Navarra. 1997;41(3):180–4.

    CAS  PubMed  Google Scholar 

  61. Zhang J, Lineaweaver WC, Oswald T, et al. Ciliary neurotrophic factor for acceleration of peripheral nerve regeneration: an experimental study. J Reconstr Microsurg. 2004;20(4):323–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

No sources of funding were received to prepare this article. We thank Zhaohui Shao, Xinhua Lee, Benxiu Ji, Bruce Jenkins and Guangron Huang for their contributions to these studies. Sha Mi, R. Blake Pepinsky and Diego Cadavid are employees of Biogen Idec Inc. Biogen Idec Inc. markets two products for the treatment of multiple sclerosis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sha Mi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mi, S., Blake Pepinsky, R. & Cadavid, D. Blocking LINGO-1 as a Therapy to Promote CNS Repair: From Concept to the Clinic. CNS Drugs 27, 493–503 (2013). https://doi.org/10.1007/s40263-013-0068-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-013-0068-8

Keywords

Navigation