Skip to main content

Advertisement

Log in

Ionic Regulation of Cell Volume Changes and Cell Death after Ischemic Stroke

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Stroke is a leading cause of human death and disability in the USA and around the world. Shortly after the cerebral ischemia, cell swelling is the earliest morphological change in injured neuronal, glial, and endothelial cells. Cytotoxic swelling directly results from increased Na+ (with H2O) and Ca2+ influx into cells via ionic mechanisms evoked by membrane depolarization and a number of harmful factors such as glutamate accumulation and the production of oxygen reactive species. During the sub-acute and chronic phases after ischemia, injured cells may show a phenotype of cell shrinkage due to complex processes involving membrane receptors/channels and programmed cell death signals. This review will introduce some progress in the understanding of the regulation of pathological cell volume changes and the involved receptors and channels, including NMDA and AMPA receptors, acid-sensing ion channels, hemichannels, transient receptor potential channels, and KCNQ channels. Moreover, accumulating evidence supports a key role of energy deficiency and dysfunction of Na+/K+-ATPase in ischemia-induced cell volume changes and cell death. Specifically, the Na+ pump failure is a prerequisite for disruption of ionic homeostasis including a pro-apoptotic disruption of the K+ homeostasis. Finally, we will introduce the concept of hybrid cell death as a result of the Na+ pump failure in cultured cells and the ischemic brain. The goal of this review is to outline recent understanding of the ionic mechanism of ischemic cytotoxicity and suggest innovative ideas for future translational research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–e245.

    PubMed  Google Scholar 

  2. Yap E, Tan WL, Ng I, Ng YK. Combinatorial-approached neuroprotection using pan-caspase inhibitor and poly (ADP-ribose) polymerase (PARP) inhibitor following experimental stroke in rats; is there additional benefit? Brain Res. 2008;1195:130–8.

    CAS  PubMed  Google Scholar 

  3. Baille V, Clarke PG, Brochier G, Dorandeu F, Verna JM, Four E, et al. Soman-induced convulsions: the neuropathology revisited. Toxicology. 2005;215:1–24.

    CAS  PubMed  Google Scholar 

  4. Gladstone DJ, Black SE, Hakim AM. Heart, and Stroke Foundation of Ontario Centre of Excellence in Stroke, R., Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke. 2002;33:2123–36.

    PubMed  Google Scholar 

  5. Ginsberg MD. Current status of neuroprotection for cerebral ischemia: synoptic overview. Stroke. 2009;40:S111–4.

    PubMed Central  PubMed  Google Scholar 

  6. Minnerup J, Sutherland BA, Buchan AM, Kleinschnitz C. Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci. 2012;13:11753–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Sutherland BA, Minnerup J, Balami JS, Arba F, Buchan AM, Kleinschnitz C. Neuroprotection for ischaemic stroke: translation from the bench to the bedside. Int J Stroke. 2012;7:407–18.

    PubMed  Google Scholar 

  8. Goldberg MP, Ransom BR. New light on white matter. Stroke. 2003;34:330–2.

    PubMed  Google Scholar 

  9. Arakawa S, Wright PM, Koga M, Phan TG, Reutens DC, Lim I, et al. Ischemic thresholds for gray and white matter: a diffusion and perfusion magnetic resonance study. Stroke. 2006;37:1211–6.

    PubMed  Google Scholar 

  10. Pantoni L, Garcia JH, Gutierrez JA. Cerebral white matter is highly vulnerable to ischemia. Stroke. 1996;27:1641–6. discussion 1647.

    CAS  PubMed  Google Scholar 

  11. Di Lisa F. Mitochondrial contribution in the progression of cardiac ischemic injury. IUBMB Life. 2001;52:255–61.

    PubMed  Google Scholar 

  12. Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4:399–415.

    CAS  PubMed  Google Scholar 

  13. Xing C, Arai K, Lo EH, Hommel M. Pathophysiologic cascades in ischemic stroke. Int J Stroke. 2012;7:378–85.

    PubMed  Google Scholar 

  14. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10:861–72.

    CAS  PubMed  Google Scholar 

  15. Ramana MV, Nandikar M, Gurav RV, Johny Kumar T, Sanjappa M. Murdannia saddlepeakensis (Commelinaceae)—a new species from Andaman and Nicobar Islands, India. PhytoKeys. 2013; 9–15.

  16. Bkaily G, Jaalouk D, Sader S, Shbaklo H, Pothier P, Jacques D, et al. Taurine indirectly increases [Ca]i by inducing Ca2+ influx through the Na(+)-Ca2+ exchanger. Mol Cell Biochem. 1998;188:187–97.

    CAS  PubMed  Google Scholar 

  17. Garcia JH, Yoshida Y, Chen H, Li Y, Zhang ZG, Lian J, et al. Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol. 1993;142:623–35.

    Google Scholar 

  18. Nukada H, Dyck PJ. Acute ischemia causes axonal stasis, swelling, attenuation, and secondary demyelination. Ann Neurol. 1987;22:311–8.

    CAS  PubMed  Google Scholar 

  19. Yu SP, Choi DW. Na(+)-Ca2+ exchange currents in cortical neurons: concomitant forward and reverse operation and effect of glutamate. Eur J Neurosci. 1997;9:1273–81.

    CAS  PubMed  Google Scholar 

  20. Cuomo O, Gala R, Pignataro G, Boscia F, Secondo A, Scorziello A, et al. A critical role for the potassium-dependent sodium-calcium exchanger NCKX2 in protection against focal ischemic brain damage. J Neurosci. 2008;28:2053–63.

    CAS  PubMed  Google Scholar 

  21. Molinaro P, Cuomo O, Pignataro G, Boscia F, Sirabella R, Pannaccione A, et al. Targeted disruption of Na+/Ca2+ exchanger 3 (NCX3) gene leads to a worsening of ischemic brain damage. J Neurosci. 2008;28:1179–84.

    CAS  PubMed  Google Scholar 

  22. Jeffs GJ, Meloni BP, Sokolow S, Herchuelz A, Schurmans S, Knuckey NW. NCX3 knockout mice exhibit increased hippocampal CA1 and CA2 neuronal damage compared to wild-type mice following global cerebral ischemia. Exp Neurol. 2008;210:268–73.

    CAS  PubMed  Google Scholar 

  23. Jeffs GJ, Meloni BP, Bakker AJ, Knuckey NW. The role of the Na(+)/Ca(2+) exchanger (NCX) in neurons following ischaemia. J Clin Neurosci. 2007;14:507–14.

    CAS  PubMed  Google Scholar 

  24. Gomez-Angelats M, Bortner CD, Cidlowski JA. Cell volume regulation in immune cell apoptosis. Cell Tissue Res. 2000;301:33–42.

    CAS  PubMed  Google Scholar 

  25. Nunez R, Sancho-Martinez SM, Novoa JM, Lopez-Hernandez FJ Apoptotic volume decrease as a geometric determinant for cell dismantling into apoptotic bodies. Cell Death Differ. 17:1665–71.

  26. Bortner CD, Cidlowski JA. A necessary role for cell shrinkage in apoptosis. Biochem Pharmacol. 1998;56:1549–59.

    CAS  PubMed  Google Scholar 

  27. Ranjbar E, Shams J, Sabetkasaei M, M MS, Rashidkhani B, Mostafavi A, Bornak E, Nasrollahzadeh J. Effects of zinc supplementation on efficacy of antidepressant therapy, inflammatory cytokines, and brain-derived neurotrophic factor in patients with major depression. Nutr Neurosci. 2013.

  28. Rich A, Gordon S, Brown C, Gibbons SJ, Schaefer K, Hennig G, et al. Kit signaling is required for development of coordinated motility patterns in zebrafish gastrointestinal tract. Zebrafish. 2013;10:154–60.

    CAS  PubMed  Google Scholar 

  29. de Oliveira Otto MC, Nettleton JA, Lemaitre RN, Steffen LM, Kromhout D, Rich SS, et al. Biomarkers of dairy fatty acids and risk of cardiovascular disease in the multi-ethnic study of atherosclerosis. J Am Heart Assoc. 2013;2:e000092.

    PubMed Central  PubMed  Google Scholar 

  30. Remillard CV, Yuan JX. Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol. 2004;286:L49–67.

    CAS  PubMed  Google Scholar 

  31. Xie Y, Zacharias E, Hoff P, Tegtmeier F. Ion channel involvement in anoxic depolarization induced by cardiac arrest in rat brain. J Cereb Blood Flow Metab. 1995;15:587–94.

    CAS  PubMed  Google Scholar 

  32. Somjen GG. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev. 2001;81:1065–96.

    CAS  PubMed  Google Scholar 

  33. Nedergaard M, Hansen AJ. Characterization of cortical depolarizations evoked in focal cerebral ischemia. J Cereb Blood Flow Metab. 1993;13:568–74.

    CAS  PubMed  Google Scholar 

  34. Zhang X, Lee TH, Davidson C, Lazarus C, Wetsel WC, Ellinwood EH. Reversal of cocaine-induced behavioral sensitization and associated phosphorylation of the NR2B and GluR1 subunits of the NMDA and AMPA receptors. Neuropsychopharmacology. 2007;32:377–87.

    CAS  PubMed  Google Scholar 

  35. G N, P VA, A RS, R R, M S, R S. Role of TSH on urinary calcium excretion in post menopausal women of South Indian population. J Clin Diagn Res. 2013;7:1099–101.

  36. Burg ED, Remillard CV, Yuan JX. Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis: pharmacotherapeutic implications. Br J Pharmacol. 2008;153 Suppl 1:S99–S111.

    CAS  PubMed  Google Scholar 

  37. Hughes Jr FM, Cidlowski JA. Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv Enzyme Regul. 1999;39:157–71.

    CAS  PubMed  Google Scholar 

  38. Xiao AY, Homma M, Wang XQ, Wang X, Yu SP. Role of K(+) efflux in apoptosis induced by AMPA and kainate in mouse cortical neurons. Neuroscience. 2001;108:61–7.

    CAS  PubMed  Google Scholar 

  39. Choi DW. Possible mechanisms limiting N-methyl-d-aspartate receptor overactivation and the therapeutic efficacy of N-methyl-d-aspartate antagonists. Stroke. 1990;21:III20–2.

    CAS  PubMed  Google Scholar 

  40. Kwak S, Weiss JH. Calcium-permeable AMPA channels in neurodegenerative disease and ischemia. Curr Opin Neurobiol. 2006;16:281–7.

    CAS  PubMed  Google Scholar 

  41. Stanika RI, Pivovarova NB, Brantner CA, Watts CA, Winters CA, Andrews SB. Coupling diverse routes of calcium entry to mitochondrial dysfunction and glutamate excitotoxicity. Proc Natl Acad Sci U S A. 2009;106:9854–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Rodriguez IA, Fernandez-Segura E, Ceballos G, Arrebola F, del Carmen Sanchez-Quevedo M, Campos A. Hybrid cell death induced by exposure to 2-hydroxyethyl methacrylate (HEMA): an ultrastructural and X-ray microanalytical study. J Adhes Dent. 2008;10:105–11.

    CAS  PubMed  Google Scholar 

  43. Matute C. Characteristics of acute and chronic kainate excitotoxic damage to the optic nerve. Proc Natl Acad Sci U S A. 1998;95:10229–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Li S, Stys PK. Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J Neurosci. 2000;20:1190–8.

    CAS  PubMed  Google Scholar 

  45. Domercq M, Etxebarria E, Perez-Samartin A, Matute C. Excitotoxic oligodendrocyte death and axonal damage induced by glutamate transporter inhibition. Glia. 2005;52:36–46.

    PubMed  Google Scholar 

  46. Tekkok SB, Goldberg MP. Ampa/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter. J Neurosci. 2001;21:4237–48.

    CAS  PubMed  Google Scholar 

  47. Yoshioka A, Hardy M, Younkin DP, Grinspan JB, Stern JL, Pleasure D. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors mediate excitotoxicity in the oligodendroglial lineage. J Neurochem. 1995;64:2442–8.

    CAS  PubMed  Google Scholar 

  48. Sanchez-Gomez MV, Matute C. AMPA and kainate receptors each mediate excitotoxicity in oligodendroglial cultures. Neurobiol Dis. 1999;6:475–85.

    CAS  PubMed  Google Scholar 

  49. McDonald JW, Althomsons SP, Hyrc KL, Choi DW, Goldberg MP. Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat Med. 1998;4:291–7.

    CAS  PubMed  Google Scholar 

  50. Follett PL, Rosenberg PA, Volpe JJ, Jensen FE. NBQX attenuates excitotoxic injury in developing white matter. J Neurosci. 2000;20:9235–41.

    CAS  PubMed  Google Scholar 

  51. Ouardouz M, Coderre E, Basak A, Chen A, Zamponi GW, Hameed S, et al. Glutamate receptors on myelinated spinal cord axons: I. GluR6 kainate receptors. Ann Neurol. 2009;65:151–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Ouardouz M, Coderre E, Zamponi GW, Hameed S, Yin X, Trapp BD, et al. Glutamate receptors on myelinated spinal cord axons: II. AMPA and GluR5 receptors. Ann Neurol. 2009;65:160–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Berger T, Walz W, Schnitzer J, Kettenmann H. GABA- and glutamate-activated currents in glial cells of the mouse corpus callosum slice. J Neurosci Res. 1992;31:21–7.

    CAS  PubMed  Google Scholar 

  54. Patneau DK, Wright PW, Winters C, Mayer ML, Gallo V. Glial cells of the oligodendrocyte lineage express both kainate- and AMPA-preferring subtypes of glutamate receptor. Neuron. 1994;12:357–71.

    CAS  PubMed  Google Scholar 

  55. Liu HN, Almazan G. Glutamate induces c-fos proto-oncogene expression and inhibits proliferation in oligodendrocyte progenitors: receptor characterization. Eur J Neurosci. 1995;7:2355–63.

    CAS  PubMed  Google Scholar 

  56. Karadottir R, Cavelier P, Bergersen LH, Attwell D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature. 2005;438:1162–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Salter MG, Fern R. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature. 2005;438:1167–71.

    CAS  PubMed  Google Scholar 

  58. Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, et al. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature. 2006;439:988–92.

    CAS  PubMed  Google Scholar 

  59. Besancon E, Guo S, Lok J, Tymianski M, Lo EH. Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci. 2008;29:268–75.

    CAS  PubMed  Google Scholar 

  60. Price MP, Snyder PM, Welsh MJ. Cloning and expression of a novel human brain Na+ channel. J Biol Chem. 1996;271:7879–82.

    CAS  PubMed  Google Scholar 

  61. Chen CC, England S, Akopian AN, Wood JN. A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci U S A. 1998;95:10240–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Price MP, Lewin GR, McIlwrath SL, Cheng C, Xie J, Heppenstall PA, et al. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature. 2000;407:1007–11.

    CAS  PubMed  Google Scholar 

  63. Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron. 2002;34:463–77.

    CAS  PubMed  Google Scholar 

  64. Wemmie JA, Askwith CC, Lamani E, Cassell MD, Freeman Jr JH, Welsh MJ. Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci. 2003;23:5496–502.

    CAS  PubMed  Google Scholar 

  65. Nedergaard M, Kraig RP, Tanabe J, Pulsinelli WA. Dynamics of interstitial and intracellular pH in evolving brain infarct. Am J Physiol. 1991;260:R581–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Wemmie JA, Taugher RJ, Kreple CJ. Acid-sensing ion channels in pain and disease. Nat Rev Neurosci. 2013;14:461–71.

    CAS  PubMed  Google Scholar 

  67. Vergo S, Craner MJ, Etzensperger R, Attfield K, Friese MA, Newcombe J, et al. Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain. 2011;134:571–84.

    PubMed  Google Scholar 

  68. Marmarou A. Intracellular acidosis in human and experimental brain injury. J Neurotrauma. 1992;9 Suppl 2:S551–62.

    PubMed  Google Scholar 

  69. Li M, Inoue K, Branigan D, Kratzer E, Hansen JC, Chen JW, et al. Acid-sensing ion channels in acidosis-induced injury of human brain neurons. J Cereb Blood Flow Metab. 2010;30:1247–60.

    PubMed  Google Scholar 

  70. Wemmie JA, Price MP, Welsh MJ. Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci. 2006;29:578–86.

    CAS  PubMed  Google Scholar 

  71. Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118:687–98.

    CAS  PubMed  Google Scholar 

  72. Gao J, Duan B, Wang DG, Deng XH, Zhang GY, Xu L, et al. Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron. 2005;48:635–46.

    CAS  PubMed  Google Scholar 

  73. Immke DC, McCleskey EW. Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons. Nat Neurosci. 2001;4:869–70.

    CAS  PubMed  Google Scholar 

  74. Wang WZ, Chu XP, Li MH, Seeds J, Simon RP, Xiong ZG. Modulation of acid-sensing ion channel currents, acid-induced increase of intracellular Ca2+, and acidosis-mediated neuronal injury by intracellular pH. J Biol Chem. 2006;281:29369–78.

    CAS  PubMed  Google Scholar 

  75. Pignataro G, Simon RP, Xiong ZG. Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. Brain. 2007;130:151–8.

    PubMed  Google Scholar 

  76. Gu L, Yang Y, Sun Y, Zheng X. Puerarin inhibits acid-sensing ion channels and protects against neuron death induced by acidosis. Planta Med. 2010;76:583–8.

    CAS  PubMed  Google Scholar 

  77. Chang Y, Hsieh CY, Peng ZA, Yen TL, Hsiao G, Chou DS, et al. Neuroprotective mechanisms of puerarin in middle cerebral artery occlusion-induced brain infarction in rats. J Biomed Sci. 2009;16:9.

    PubMed  Google Scholar 

  78. Zhang Y, Zhou L, Zhang X, Bai J, Shi M, Zhao G. Ginsenoside-Rd attenuates TRPM7 and ASIC1a but promotes ASIC2a expression in rats after focal cerebral ischemia. Neurol Sci. 2012;33:1125–31.

    CAS  PubMed  Google Scholar 

  79. Yifeng M, Bin W, Weiqiao Z, Yongming Q, Bing L, Xiaojie L. Neuroprotective effect of sophocarpine against transient focal cerebral ischemia via down-regulation of the acid-sensing ion channel 1 in rats. Brain Res. 2011;1382:245–51.

    PubMed  Google Scholar 

  80. Bennett MV, Barrio LC, Bargiello TA, Spray DC, Hertzberg E, Saez JC. Gap junctions: new tools, new answers, new questions. Neuron. 1991;6:305–20.

    CAS  PubMed  Google Scholar 

  81. Evans WH, De Vuyst E, Leybaert L. The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J. 2006;397:1–14.

    CAS  PubMed  Google Scholar 

  82. Hansen KA, Torborg CL, Elstrott J, Feller MB. Expression and function of the neuronal gap junction protein connexin 36 in developing mammalian retina. J Comp Neurol. 2005;493:309–20.

    CAS  PubMed  Google Scholar 

  83. Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H. Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci U S A. 2003;100:13644–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Ray A, Zoidl G, Weickert S, Wahle P, Dermietzel R. Site-specific and developmental expression of pannexin1 in the mouse nervous system. Eur J Neurosci. 2005;21:3277–90.

    PubMed  Google Scholar 

  85. Zoidl G, Petrasch-Parwez E, Ray A, Meier C, Bunse S, Habbes HW, et al. Localization of the pannexin1 protein at postsynaptic sites in the cerebral cortex and hippocampus. Neuroscience. 2007;146:9–16.

    CAS  PubMed  Google Scholar 

  86. Vogt A, Hormuzdi SG, Monyer H. Pannexin1 and Pannexin2 expression in the developing and mature rat brain. Brain Res Mol Brain Res. 2005;141:113–20.

    CAS  PubMed  Google Scholar 

  87. Orellana JA, Martinez AD, Retamal MA. Gap junction channels and hemichannels in the CNS: regulation by signaling molecules. Neuropharmacology. 2013.

  88. Kimelberg HK, Sankar P, O’Connor ER, Jalonen T, Goderie SK. Functional consequences of astrocytic swelling. Prog Brain Res. 1992;94:57–68.

    CAS  PubMed  Google Scholar 

  89. Wu Z, Xu H, He Y, Yang G, Liao C, Gao W, et al. Antisense oligodeoxynucleotides targeting connexin43 reduce cerebral astrocytosis and edema in a rat model of traumatic brain injury. Neurol Res. 2013;35:255–62.

    CAS  PubMed  Google Scholar 

  90. Thompson RJ, Zhou N, MacVicar BA. Ischemia opens neuronal gap junction hemichannels. Science. 2006;312:924–7.

    CAS  PubMed  Google Scholar 

  91. Takeuchi H, Jin S, Suzuki H, Doi Y, Liang J, Kawanokuchi J, et al. Blockade of microglial glutamate release protects against ischemic brain injury. Exp Neurol. 2008;214:144–6.

    CAS  PubMed  Google Scholar 

  92. de Pina-Benabou MH, Szostak V, Kyrozis A, Rempe D, Uziel D, Urban-Maldonado M, et al. Blockade of gap junctions in vivo provides neuroprotection after perinatal global ischemia. Stroke. 2005;36:2232–7.

    PubMed  Google Scholar 

  93. Bargiotas P, Krenz A, Hormuzdi SG, Ridder DA, Herb A, Barakat W, et al. Pannexins in ischemia-induced neurodegeneration. Proc Natl Acad Sci U S A. 2011;108:20772–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Owsianik G, D’Hoedt D, Voets T, Nilius B. Structure–function relationship of the TRP channel superfamily. Rev Physiol Biochem Pharmacol. 2006;156:61–90.

    CAS  PubMed  Google Scholar 

  95. Latorre R. Perspectives on TRP channel structure and the TRPA1 puzzle. J Gen Physiol. 2009;133:227–9.

    PubMed Central  PubMed  Google Scholar 

  96. Minke B. Drosophila mutant with a transducer defect. Biophys Struct Mech. 1977;3:59–64.

    CAS  PubMed  Google Scholar 

  97. Abramowitz J, Birnbaumer L. Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J. 2009;23:297–328.

    CAS  PubMed  Google Scholar 

  98. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, et al. A key role for TRPM7 channels in anoxic neuronal death. Cell. 2003;115:863–77.

    CAS  PubMed  Google Scholar 

  99. Butenko O, Dzamba D, Benesova J, Honsa P, Benfenati V, Rusnakova V, et al. The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia. PLoS One. 2012;7:e39959.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Ding X, He Z, Zhou K, Cheng J, Yao H, Lu D, et al. Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. J Natl Cancer Inst. 2010;102:1052–68.

    CAS  PubMed  Google Scholar 

  101. Tai Y, Feng S, Ge R, Du W, Zhang X, He Z, et al. TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway. J Cell Sci. 2008;121:2301–7.

    CAS  PubMed  Google Scholar 

  102. Chigurupati S, Venkataraman R, Barrera D, Naganathan A, Madan M, Paul L, et al. Receptor channel TRPC6 is a key mediator of Notch-driven glioblastoma growth and invasiveness. Cancer Res. 2010;70:418–27.

    CAS  PubMed  Google Scholar 

  103. Phelan KD, Shwe UT, Abramowitz J, Wu H, Rhee SW, Howell MD, et al. Canonical transient receptor channel 5 (TRPC5) and TRPC1/4 contribute to seizure and excitotoxicity by distinct cellular mechanisms. Mol Pharmacol. 2013;83:429–38.

    CAS  PubMed  Google Scholar 

  104. Jia Y, Zhou J, Tai Y, Wang Y. TRPC channels promote cerebellar granule neuron survival. Nat Neurosci. 2007;10:559–67.

    CAS  PubMed  Google Scholar 

  105. Du W, Huang J, Yao H, Zhou K, Duan B, Wang Y. Inhibition of TRPC6 degradation suppresses ischemic brain damage in rats. J Clin Invest. 2010;120:3480–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Pal S, Hartnett KA, Nerbonne JM, Levitan ES, Aizenman E. Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J Neurosci. 2003;23:4798–802.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Redman PT, He K, Hartnett KA, Jefferson BS, Hu L, Rosenberg PA, et al. Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. Proc Natl Acad Sci U S A. 2007;104:3568–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Jehle J, Schweizer PA, Katus HA, Thomas D. Novel roles for hERG K(+) channels in cell proliferation and apoptosis. Cell Death Dis. 2: e193.

  109. Jessica Chen M, Sepramaniam S, Armugam A, Shyan Choy M, Manikandan J, Melendez AJ, et al. Water and ion channels: crucial in the initiation and progression of apoptosis in central nervous system? Curr Neuropharmacol. 2008;6:102–16.

    PubMed  Google Scholar 

  110. Calloe K, Nielsen MS, Grunnet M, Schmitt N, Jorgensen NK. KCNQ channels are involved in the regulatory volume decrease response in primary neonatal rat cardiomyocytes. Biochim Biophys Acta. 2007;1773:764–73.

    CAS  PubMed  Google Scholar 

  111. Zhou X, Wei J, Song M, Francis K, Yu SP. Novel role of KCNQ2/3 channels in regulating neuronal cell viability. Cell Death Differ. 18: 493–505.

  112. Weston AH, Edwards G. Recent progress in potassium channel opener pharmacology. Biochem Pharmacol. 1992;43:47–54.

    CAS  PubMed  Google Scholar 

  113. Gensini GF, Simone I, Pantoni L, Inzitari D. Large trials in the secondary prevention of stroke. Ann Ital Med Int. 1996;11 Suppl 2:102S–9S.

    PubMed  Google Scholar 

  114. Wei N, Yu SP, Gu XH, Chen DD, Whalin MK, Xu GL, Liu XF, Wei L. The involvement of autophagy pathway in exaggerated ischemic brain damage in diabetic mice. CNS Neurosci Ther. 2013.

  115. Yacobi-Sharon K, Namdar Y, Arama E. Alternative germ cell death pathway in Drosophila involves HtrA2/Omi, lysosomes, and a caspase-9 counterpart. Dev Cell. 2013;25:29–42.

    CAS  PubMed  Google Scholar 

  116. Chaabane W, User SD, El-Gazzah M, Jaksik R, Sajjadi E, Rzeszowska-Wolny J, et al. Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer. Arch Immunol Ther Exp (Warsz). 2013;61:43–58.

    CAS  Google Scholar 

  117. Puyal J, Ginet V, Grishchuk Y, Truttmann AC, Clarke PG. Neuronal autophagy as a mediator of life and death: contrasting roles in chronic neurodegenerative and acute neural disorders. Neuroscientist. 2012;18:224–36.

    CAS  PubMed  Google Scholar 

  118. Pantoni L, Moretti M, Inzitari D. The first Italian report on “Binswanger’s disease”. Ital J Neurol Sci. 1996;17:367–70.

    CAS  PubMed  Google Scholar 

  119. Pantoni L, Garcia JH, Brown GG. Vascular pathology in three cases of progressive cognitive deterioration. J Neurol Sci. 1996;135:131–9.

    CAS  PubMed  Google Scholar 

  120. Linkermann A, Hackl MJ, Kunzendorf U, Walczak H, Krautwald S, Jevnikar AM. Necroptosis in immunity and ischemia-reperfusion injury. Am J Transplant. 2013.

  121. Tischner D, Manzl C, Soratroi C, Villunger A, Krumschnabel G. Necrosis-like death can engage multiple pro-apoptotic Bcl-2 protein family members. Apoptosis. 2012;17:1197–209.

    CAS  PubMed  Google Scholar 

  122. Gong J, Kumar SA, Graham G, Kumar AP. FLIP: Molecular switch between apoptosis and necroptosis. Mol Carcinog. 2013.

  123. Bonnet MC, Bagot M, Bensussan A. Apoptotic and necroptotic cell death in cutaneous inflammation. Eur J Dermatol. 2013.

  124. Chan FK. Fueling the flames: Mammalian programmed necrosis in inflammatory diseases. Cold Spring Harb Perspect Biol. 2012;4.

  125. Dickens LS, Powley IR, Hughes MA, MacFarlane M. The ‘complexities’ of life and death: death receptor signalling platforms. Exp Cell Res. 2012;318:1269–77.

    CAS  PubMed  Google Scholar 

  126. Oerlemans MI, Koudstaal S, Chamuleau SA, de Kleijn DP, Doevendans PA, Sluijter JP. Targeting cell death in the reperfused heart: pharmacological approaches for cardioprotection. Int J Cardiol. 2013;165:410–22.

    PubMed  Google Scholar 

  127. Han J, Zhong CQ, Zhang DW. Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol. 2011;12:1143–9.

    CAS  PubMed  Google Scholar 

  128. Vanlangenakker N, Vanden Berghe T, Vandenabeele P. Many stimuli pull the necrotic trigger, an overview. Cell Death Differ. 2012;19:75–86.

    CAS  PubMed  Google Scholar 

  129. Galluzzi L, Vanden Berghe T, Vanlangenakker N, Buettner S, Eisenberg T, Vandenabeele P, et al. Programmed necrosis from molecules to health and disease. Int Rev Cell Mol Biol. 2011;289:1–35.

    CAS  PubMed  Google Scholar 

  130. Smith CC, Yellon DM. Necroptosis, necrostatins and tissue injury. J Cell Mol Med. 2011;15:1797–806.

    CAS  PubMed  Google Scholar 

  131. Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev. 2007;54:34–66.

    CAS  PubMed  Google Scholar 

  132. Webster KA. Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Future Cardiol. 2012;8:863–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Xu M, Zhang HL. Death and survival of neuronal and astrocytic cells in ischemic brain injury: a role of autophagy. Acta Pharmacol Sin. 2011;32:1089–99.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant NS057255, the American Heart Association (AHA) Grant-in-Aid Award GRNT12060222, and AHA Postdoctoral Fellowship (POST12080252).

Compliance with Ethics Requirements

This is a review article that does not contain any studies with human or animal subjects. The authors assume that all original studies cited in this review followed institutional and national guidelines for the care and use of laboratory animals and guidelines for clinical trials on patients. However, the authors are not responsible for any violation of the guidelines in the original investigations.

Conflict of Interest

The two authors receive research grants from NIH and AHA as listed below.

Shan Ping Yu: NIH grant NS057255, the American Heart Association (AHA) Grant-in-Aid Award GRNT12060222.

Mingke Song: AHA Postdoctoral Fellowship (POST12080252).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Ping Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, M., Yu, S.P. Ionic Regulation of Cell Volume Changes and Cell Death after Ischemic Stroke. Transl. Stroke Res. 5, 17–27 (2014). https://doi.org/10.1007/s12975-013-0314-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-013-0314-x

Keywords

Navigation