Skip to main content

Advertisement

Log in

The Actin–MRTF–SRF Gene Regulatory Axis and Myofibroblast Differentiation

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiac fibroblasts are responsible for necrotic tissue replacement and scar formation after myocardial infarction (MI) and contribute to remodeling in response to pathological stimuli. This response to insult or injury is largely due to the phenotypic plasticity of fibroblasts. When fibroblasts encounter environmental disturbances, whether biomechanical or humoral, they often transform into smooth muscle-like, contractile cells called “myofibroblasts.” The signals that control myofibroblast differentiation include the transforming growth factor (TGF)-β1–Smad pathway and Rho GTPase-dependent actin polymerization. Recent evidence implicates serum response factor (SRF) and the myocardin-related transcription factors (MRTFs) as key mediators of the contractile gene program in response to TGF-β1 or RhoA signaling. This review highlights the function of myofibroblasts in cardiac remodeling and the role of the actin–MRTF–SRF signaling axis in regulating this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hill, J. A., & Olson, E. N. (2008). Cardiac plasticity. The New England Journal of Medicine, 358(13), 1370–1380. doi:10.1056/NEJMra072139.

    PubMed  CAS  Google Scholar 

  2. Swynghedauw, B. (1999). Molecular mechanisms of myocardial remodeling. Physiological Reviews, 79(1), 215–262.

    PubMed  CAS  Google Scholar 

  3. Kehat, I., & Molkentin, J. D. (2010). Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation, 122(25), 2727–2735. doi:10.1161/CIRCULATIONAHA.110.942268.

    PubMed  Google Scholar 

  4. Manabe, I., Shindo, T., & Nagai, R. (2002). Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circulation Research, 91(12), 1103–1113.

    PubMed  CAS  Google Scholar 

  5. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C., & Brown, R. A. (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Reviews Molecular Cell Biology, 3(5), 349–363.

    PubMed  CAS  Google Scholar 

  6. Teekakirikul, P., Eminaga, S., Toka, O., Alcalai, R., Wang, L., Wakimoto, H., et al. (2010). Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-beta. The Journal of Clinical Investigation, 120(10), 3520–3529. doi:10.1172/JCI42028.

    PubMed  CAS  Google Scholar 

  7. Hinz, B. (2007). Formation and function of the myofibroblast during tissue repair. The Journal of Investigative Dermatology, 127(3), 526–537.

    PubMed  CAS  Google Scholar 

  8. Serini, G., & Gabbiani, G. (1999). Mechanisms of myofibroblast activity and phenotypic modulation. Experimental Cell Research, 250(2), 273–283.

    PubMed  CAS  Google Scholar 

  9. Desmouliere, A., Geinoz, A., Gabbiani, F., & Gabbiani, G. (1993). Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. The Journal of Cell Biology, 122(1), 103–111.

    PubMed  CAS  Google Scholar 

  10. Mayer, D. C., & Leinwand, L. A. (1997). Sarcomeric gene expression and contractility in myofibroblasts. The Journal of Cell Biology, 139(6), 1477–1484.

    PubMed  CAS  Google Scholar 

  11. Desmouliere, A., Darby, I. A., & Gabbiani, G. (2003). Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Laboratory Investigation, 83(12), 1689–1707.

    PubMed  Google Scholar 

  12. Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research, 74(2), 184–195.

    PubMed  CAS  Google Scholar 

  13. Bujak, M., Ren, G., Kweon, H. J., Dobaczewski, M., Reddy, A., Taffet, G., et al. (2007). Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation, 116(19), 2127–2138.

    PubMed  CAS  Google Scholar 

  14. Norman, C., Runswick, M., Pollock, R., & Treisman, R. (1988). Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell, 55(6), 989–1003.

    PubMed  CAS  Google Scholar 

  15. Arsenian, S., Weinhold, B., Oelgeschlager, M., Ruther, U., & Nordheim, A. (1998). Serum response factor is essential for mesoderm formation during mouse embryogenesis. The EMBO Journal, 17(21), 6289–6299. doi:10.1093/emboj/17.21.6289.

    PubMed  CAS  Google Scholar 

  16. Miano, J. M. (2010). Role of serum response factor in the pathogenesis of disease. Laboratory Investigation, 90(9), 1274–1284. doi:10.1038/labinvest.2010.104.

    PubMed  CAS  Google Scholar 

  17. Parlakian, A., Tuil, D., Hamard, G., Tavernier, G., Hentzen, D., Concordet, J. P., et al. (2004). Targeted inactivation of serum response factor in the developing heart results in myocardial defects and embryonic lethality. Molecular and Cellular Biology, 24(12), 5281–5289. doi:10.1128/MCB.24.12.5281-5289.2004.

    PubMed  CAS  Google Scholar 

  18. Miano, J. M., Ramanan, N., Georger, M. A., de Mesy Bentley, K. L., Emerson, R. L., Balza, R. O., Jr., et al. (2004). Restricted inactivation of serum response factor to the cardiovascular system. Proceedings of the National Academy of Sciences of the United States of America, 101(49), 17132–17137. doi:10.1073/pnas.0406041101.

    PubMed  CAS  Google Scholar 

  19. Niu, Z., Iyer, D., Conway, S. J., Martin, J. F., Ivey, K., Srivastava, D., et al. (2008). Serum response factor orchestrates nascent sarcomerogenesis and silences the biomineralization gene program in the heart. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 17824–17829. doi:10.1073/pnas.0805491105.

    PubMed  CAS  Google Scholar 

  20. Niu, Z., Yu, W., Zhang, S. X., Barron, M., Belaguli, N. S., Schneider, M. D., et al. (2005). Conditional mutagenesis of the murine serum response factor gene blocks cardiogenesis and the transcription of downstream gene targets. Journal of Biological Chemistry, 280(37), 32531–32538. doi:10.1074/jbc.M501372200.

    PubMed  CAS  Google Scholar 

  21. Parlakian, A., Charvet, C., Escoubet, B., Mericskay, M., Molkentin, J. D., Gary-Bobo, G., et al. (2005). Temporally controlled onset of dilated cardiomyopathy through disruption of the SRF gene in adult heart. Circulation, 112(19), 2930–2939. doi:10.1161/CIRCULATIONAHA.105.533778.

    PubMed  CAS  Google Scholar 

  22. Gary-Bobo, G., Parlakian, A., Escoubet, B., Franco, C. A., Clement, S., Bruneval, P., et al. (2008). Mosaic inactivation of the serum response factor gene in the myocardium induces focal lesions and heart failure. European Journal of Heart Failure, 10(7), 635–645. doi:10.1016/j.ejheart.2008.04.014.

    PubMed  CAS  Google Scholar 

  23. Treisman, R. (1986). Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell, 46(4), 567–574.

    PubMed  CAS  Google Scholar 

  24. Miano, J. M. (2003). Serum response factor: toggling between disparate programs of gene expression. Journal of Molecular and Cellular Cardiology, 35(6), 577–593.

    PubMed  CAS  Google Scholar 

  25. Benson, C. C., Zhou, Q., Long, X., & Miano, J. M. (2011). Identifying functional single nucleotide polymorphisms in the human CArGome. Physiological Genomics, 43(18), 1038–1048. doi:10.1152/physiolgenomics.00098.2011.

    PubMed  CAS  Google Scholar 

  26. Shaw, P. E., Schroter, H., & Nordheim, A. (1989). The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter. Cell, 56(4), 563–572.

    PubMed  CAS  Google Scholar 

  27. Chang, P. S., Li, L., McAnally, J., & Olson, E. N. (2001). Muscle specificity encoded by specific serum response factor-binding sites. Journal of Biological Chemistry, 276(20), 17206–17212. doi:10.1074/jbc.M010983200.

    PubMed  CAS  Google Scholar 

  28. Wang, D., Chang, P. S., Wang, Z., Sutherland, L., Richardson, J. A., Small, E., et al. (2001). Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell, 105(7), 851–862.

    PubMed  CAS  Google Scholar 

  29. Du, K. L., Ip, H. S., Li, J., Chen, M., Dandre, F., Yu, W., et al. (2003). Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Molecular and Cellular Biology, 23(7), 2425–2437.

    PubMed  CAS  Google Scholar 

  30. Small, E. M., Warkman, A. S., Wang, D. Z., Sutherland, L. B., Olson, E. N., & Krieg, P. A. (2005). Myocardin is sufficient and necessary for cardiac gene expression in Xenopus. Development, 132(5), 987–997.

    PubMed  CAS  Google Scholar 

  31. Li, S., Wang, D. Z., Wang, Z., Richardson, J. A., & Olson, E. N. (2003). The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9366–9370.

    PubMed  CAS  Google Scholar 

  32. Huang, J., Cheng, L., Li, J., Chen, M., Zhou, D., Lu, M. M., et al. (2008). Myocardin regulates expression of contractile genes in smooth muscle cells and is required for closure of the ductus arteriosus in mice. The Journal of Clinical Investigation, 118(2), 515–525. doi:10.1172/JCI33304.

    PubMed  CAS  Google Scholar 

  33. Hoofnagle, M. H., Neppl, R. L., Berzin, E. L., Teg Pipes, G. C., Olson, E. N., Wamhoff, B. W., et al. (2011). Myocardin is differentially required for the development of smooth muscle cells and cardiomyocytes. American Journal of Physiology—Heart and Circulatory Physiology, 300(5), H1707–H1721. doi:10.1152/ajpheart.01192.2010.

    PubMed  CAS  Google Scholar 

  34. Wang, D. Z., Li, S., Hockemeyer, D., Sutherland, L., Wang, Z., Schratt, G., et al. (2002). Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 99(23), 14855–14860.

    PubMed  CAS  Google Scholar 

  35. Miralles, F., Posern, G., Zaromytidou, A. I., & Treisman, R. (2003). Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell, 113(3), 329–342.

    PubMed  CAS  Google Scholar 

  36. Guettler, S., Vartiainen, M. K., Miralles, F., Larijani, B., & Treisman, R. (2008). RPEL motifs link the serum response factor cofactor MAL but not myocardin to Rho signaling via actin binding. Molecular and Cellular Biology, 28(2), 732–742.

    PubMed  CAS  Google Scholar 

  37. Mouilleron, S., Langer, C. A., Guettler, S., McDonald, N. Q., & Treisman, R. (2011). Structure of a pentavalent G-actin*MRTF-A complex reveals how G-actin controls nucleocytoplasmic shuttling of a transcriptional coactivator. Science Signaling, 4(177), ra40. doi:10.1126/scisignal.2001750.

    PubMed  Google Scholar 

  38. Cen, B., Selvaraj, A., Burgess, R. C., Hitzler, J. K., Ma, Z., Morris, S. W., et al. (2003). Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes. Molecular and Cellular Biology, 23(18), 6597–6608.

    PubMed  CAS  Google Scholar 

  39. Hinson, J. S., Medlin, M. D., Lockman, K., Taylor, J. M., & Mack, C. P. (2007). Smooth muscle cell-specific transcription is regulated by nuclear localization of the myocardin-related transcription factors. American Journal of Physiology—Heart and Circulatory Physiology, 292(2), H1170–H1180. doi:10.1152/ajpheart.00864.2006.

    PubMed  CAS  Google Scholar 

  40. Vartiainen, M. K., Guettler, S., Larijani, B., & Treisman, R. (2007). Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science, 316(5832), 1749–1752. doi:10.1126/science.1141084.

    PubMed  CAS  Google Scholar 

  41. Selvaraj, A., & Prywes, R. (2004). Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent. BMC Molecular Biology, 5, 13. doi:10.1186/1471-2199-5-13.

    PubMed  Google Scholar 

  42. Olson, E. N., & Nordheim, A. (2010). Linking actin dynamics and gene transcription to drive cellular motile functions. Nature Reviews Molecular Cell Biology, 11(5), 353–365. doi:10.1038/nrm2890.

    PubMed  CAS  Google Scholar 

  43. Posern, G., & Treisman, R. (2006). Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends in Cell Biology, 16(11), 588–596. doi:10.1016/j.tcb.2006.09.008.

    PubMed  CAS  Google Scholar 

  44. Liu, Z. P., Wang, Z., Yanagisawa, H., & Olson, E. N. (2005). Phenotypic modulation of smooth muscle cells through interaction of Foxo4 and myocardin. Developmental Cell, 9(2), 261–270. doi:10.1016/j.devcel.2005.05.017.

    PubMed  Google Scholar 

  45. Small, E. M., Thatcher, J. E., Sutherland, L. B., Kinoshita, H., Gerard, R. D., Richardson, J. A., et al. (2010). Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction. Circulation Research, 107(2), 294–304. doi:10.1161/CIRCRESAHA.110.223172.

    PubMed  CAS  Google Scholar 

  46. Tomasek, J. J., McRae, J., Owens, G. K., & Haaksma, C. J. (2005). Regulation of alpha-smooth muscle actin expression in granulation tissue myofibroblasts is dependent on the intronic CArG element and the transforming growth factor-beta1 control element. American Journal of Pathology, 166(5), 1343–1351.

    PubMed  CAS  Google Scholar 

  47. Tomasek, J. J., Vaughan, M. B., Kropp, B. P., Gabbiani, G., Martin, M. D., Haaksma, C. J., et al. (2006). Contraction of myofibroblasts in granulation tissue is dependent on Rho/Rho kinase/myosin light chain phosphatase activity. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 14(3), 313–320. doi:10.1111/j.1743-6109.2006.00126.x.

    Google Scholar 

  48. Crider, B. J., Risinger, G. M., Jr., Haaksma, C. J., Howard, E. W., & Tomasek, J. J. (2011). Myocardin-related transcription factors A and B are key regulators of TGF-beta1-induced fibroblast to myofibroblast differentiation. The Journal of Investigative Dermatology, 131(12), 2378–2385. doi:10.1038/jid.2011.219.

    PubMed  CAS  Google Scholar 

  49. Sun, Q., Taurin, S., Sethakorn, N., Long, X., Imamura, M., Wang, D. Z., et al. (2009). Myocardin-dependent activation of the CArG box-rich smooth muscle gamma-actin gene: preferential utilization of a single CArG element through functional association with the NKX3.1 homeodomain protein. Journal of Biological Chemistry, 284(47), 32582–32590. doi:10.1074/jbc.M109.033910.

    PubMed  CAS  Google Scholar 

  50. Sandbo, N., Kregel, S., Taurin, S., Bhorade, S., & Dulin, N. O. (2009). Critical role of serum response factor in pulmonary myofibroblast differentiation induced by TGF-beta. American Journal of Respiratory Cell and Molecular Biology, 41(3), 332–338. doi:10.1165/rcmb.2008-0288OC.

    PubMed  CAS  Google Scholar 

  51. Luchsinger, L. L., Patenaude, C. A., Smith, B. D., & Layne, M. D. (2011). Myocardin-related transcription factor-A complexes activate type I collagen expression in lung fibroblasts. Journal of Biological Chemistry, 286(51), 44116–44125. doi:10.1074/jbc.M111.276931.

    PubMed  CAS  Google Scholar 

  52. Sebe, A., Erdei, Z., Varga, K., Bodor, C., Mucsi, I., & Rosivall, L. (2010). Cdc42 regulates myocardin-related transcription factor nuclear shuttling and alpha-smooth muscle actin promoter activity during renal tubular epithelial-mesenchymal transition. Nephron Experimental Nephrology, 114(3), e117–e125. doi:10.1159/000265550.

    PubMed  CAS  Google Scholar 

  53. Masszi, A., Fan, L., Rosivall, L., McCulloch, C. A., Rotstein, O. D., Mucsi, I., et al. (2004). Integrity of cell–cell contacts is a critical regulator of TGF-beta 1-induced epithelial-to-myofibroblast transition: role for beta-catenin. American Journal of Pathology, 165(6), 1955–1967.

    PubMed  CAS  Google Scholar 

  54. Fan, L., Sebe, A., Peterfi, Z., Masszi, A., Thirone, A. C., Rotstein, O. D., et al. (2007). Cell contact-dependent regulation of epithelial-myofibroblast transition via the rho-rho kinase-phospho-myosin pathway. Molecular Biology of the Cell, 18(3), 1083–1097.

    PubMed  CAS  Google Scholar 

  55. Elberg, G., Chen, L., Elberg, D., Chan, M. D., Logan, C. J., & Turman, M. A. (2008). MKL1 mediates TGF-beta1-induced alpha-smooth muscle actin expression in human renal epithelial cells. American Journal of Physiology. Renal Physiology, 294(5), F1116–F1128.

    PubMed  CAS  Google Scholar 

  56. Busche, S., Descot, A., Julien, S., Genth, H., & Posern, G. (2008). Epithelial cell-cell contacts regulate SRF-mediated transcription via Rac-actin-MAL signalling. Journal of Cell Science, 121(Pt 7), 1025–1035. doi:10.1242/jcs.014456.

    PubMed  CAS  Google Scholar 

  57. Busche, S., Kremmer, E., & Posern, G. (2010). E-cadherin regulates MAL-SRF-mediated transcription in epithelial cells. Journal of Cell Science, 123(Pt 16), 2803–2809. doi:10.1242/jcs.061887.

    PubMed  CAS  Google Scholar 

  58. Charbonney, E., Speight, P., Masszi, A., Nakano, H., & Kapus, A. (2011). β-Catenin and Smad3 regulate the activity and stability of myocardin-related transcription factor during epithelial–myofibroblast transition. Molecular Biology of the Cell, 22(23), 4472–4485. doi:10.1091/mbc.E11-04-0335.

    PubMed  CAS  Google Scholar 

  59. Kuwahara, K., Kinoshita, H., Kuwabara, Y., Nakagawa, Y., Usami, S., Minami, T., et al. (2010). Myocardin-related transcription factor A is a common mediator of mechanical stress- and neurohumoral stimulation-induced cardiac hypertrophic signaling leading to activation of brain natriuretic peptide gene expression. Molecular and Cellular Biology, 30(17), 4134–4148. doi:10.1128/MCB.00154-10.

    PubMed  CAS  Google Scholar 

  60. McGee, K. M., Vartiainen, M. K., Khaw, P. T., Treisman, R., & Bailly, M. (2011). Nuclear transport of the serum response factor coactivator MRTF-A is downregulated at tensional homeostasis. EMBO Reports, 12(9), 963–970. doi:10.1038/embor.2011.141.

    PubMed  CAS  Google Scholar 

  61. Zeisberg, E. M., Tarnavski, O., Zeisberg, M., Dorfman, A. L., McMullen, J. R., Gustafsson, E., et al. (2007). Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nature Medicine, 13(8), 952–961.

    PubMed  CAS  Google Scholar 

  62. Humphreys, B. D., Lin, S. L., Kobayashi, A., Hudson, T. E., Nowlin, B. T., Bonventre, J. V., et al. (2010). Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. American Journal of Pathology, 176(1), 85–97. doi:10.2353/ajpath.2010.090517.

    PubMed  CAS  Google Scholar 

  63. Mack, C. P., Somlyo, A. V., Hautmann, M., Somlyo, A. P., & Owens, G. K. (2001). Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. Journal of Biological Chemistry, 276(1), 341–347.

    PubMed  CAS  Google Scholar 

  64. Liu, H. W., Halayko, A. J., Fernandes, D. J., Harmon, G. S., McCauley, J. A., Kocieniewski, P., et al. (2003). The RhoA/Rho kinase pathway regulates nuclear localization of serum response factor. American Journal of Respiratory Cell and Molecular Biology, 29(1), 39–47. doi:10.1165/rcmb.2002-0206OC.

    PubMed  CAS  Google Scholar 

  65. Sotiropoulos, A., Gineitis, D., Copeland, J., & Treisman, R. (1999). Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell, 98(2), 159–169.

    PubMed  CAS  Google Scholar 

  66. Chan, M. W., Chaudary, F., Lee, W., Copeland, J. W., & McCulloch, C. A. (2010). Force-induced myofibroblast differentiation through collagen receptors is dependent on mammalian diaphanous (mDia). Journal of Biological Chemistry, 285(12), 9273–9281. doi:10.1074/jbc.M109.075218.

    PubMed  CAS  Google Scholar 

  67. Wang, J., Chen, H., Seth, A., & McCulloch, C. A. (2003). Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. American Journal of Physiology—Heart and Circulatory Physiology, 285(5), H1871–H1881.

    PubMed  CAS  Google Scholar 

  68. Zhao, X. H., Laschinger, C., Arora, P., Szaszi, K., Kapus, A., & McCulloch, C. A. (2007). Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway. Journal of Cell Science, 120(Pt 10), 1801–1809.

    PubMed  CAS  Google Scholar 

  69. Kuwahara, K., Barrientos, T., Pipes, G. C., Li, S., & Olson, E. N. (2005). Muscle-specific signaling mechanism that links actin dynamics to serum response factor. Molecular and Cellular Biology, 25(8), 3173–3181.

    PubMed  CAS  Google Scholar 

  70. Kuwahara, K., Teg Pipes, G. C., McAnally, J., Richardson, J. A., Hill, J. A., Bassel-Duby, R., et al. (2007). Modulation of adverse cardiac remodeling by STARS, a mediator of MEF2 signaling and SRF activity. The Journal of Clinical Investigation, 117(5), 1324–1334.

    PubMed  CAS  Google Scholar 

  71. Hao, J., Ju, H., Zhao, S., Junaid, A., Scammell-La Fleur, T., & Dixon, I. M. (1999). Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. Journal of Molecular and Cellular Cardiology, 31(3), 667–678.

    PubMed  CAS  Google Scholar 

  72. Dobaczewski, M., Bujak, M., Li, N., Gonzalez-Quesada, C., Mendoza, L. H., Wang, X. F., et al. (2010). Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circulation Research, 107(3), 418–428. doi:10.1161/CIRCRESAHA.109.216101.

    PubMed  CAS  Google Scholar 

  73. Walker, G. A., Masters, K. S., Shah, D. N., Anseth, K. S., & Leinwand, L. A. (2004). Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circulation Research, 95(3), 253–260.

    PubMed  CAS  Google Scholar 

  74. Qiu, P., Feng, X. H., & Li, L. (2003). Interaction of Smad3 and SRF-associated complex mediates TGF-beta1 signals to regulate SM22 transcription during myofibroblast differentiation. Journal of Molecular and Cellular Cardiology, 35(12), 1407–1420.

    PubMed  CAS  Google Scholar 

  75. Qiu, P., Ritchie, R. P., Fu, Z., Cao, D., Cumming, J., Miano, J. M., et al. (2005). Myocardin enhances Smad3-mediated transforming growth factor-beta1 signaling in a CArG box-independent manner: smad-binding element is an important cis element for SM22alpha transcription in vivo. Circulation Research, 97(10), 983–991.

    PubMed  CAS  Google Scholar 

  76. Morita, T., Mayanagi, T., & Sobue, K. (2007). Dual roles of myocardin-related transcription factors in epithelial mesenchymal transition via slug induction and actin remodeling. The Journal of Cell Biology, 179(5), 1027–1042.

    PubMed  CAS  Google Scholar 

  77. Masszi, A., Speight, P., Charbonney, E., Lodyga, M., Nakano, H., Szaszi, K., et al. (2010). Fate-determining mechanisms in epithelial–myofibroblast transition: major inhibitory role for Smad3. The Journal of Cell Biology, 188(3), 383–399. doi:10.1083/jcb.200906155.

    PubMed  CAS  Google Scholar 

  78. Muehlich, S., Wang, R., Lee, S. M., Lewis, T. C., Dai, C., & Prywes, R. (2008). Serum-induced phosphorylation of the serum response factor coactivator MKL1 by the extracellular signal-regulated kinase 1/2 pathway inhibits its nuclear localization. Molecular and Cellular Biology, 28(20), 6302–6313. doi:10.1128/MCB.00427-08.

    PubMed  CAS  Google Scholar 

  79. Nakagawa, K., & Kuzumaki, N. (2005). Transcriptional activity of megakaryoblastic leukemia 1 (MKL1) is repressed by SUMO modification. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 10(8), 835–850. doi:10.1111/j.1365-2443.2005.00880.x.

    CAS  Google Scholar 

  80. Hinson, J. S., Medlin, M. D., Taylor, J. M., & Mack, C. P. (2008). Regulation of myocardin factor protein stability by the LIM-only protein FHL2. American Journal of Physiology—Heart and Circulatory Physiology, 295(3), H1067–H1075. doi:10.1152/ajpheart.91421.2007.

    PubMed  CAS  Google Scholar 

  81. Wixler, V., Hirner, S., Muller, J. M., Gullotti, L., Will, C., Kirfel, J., et al. (2007). Deficiency in the LIM-only protein Fhl2 impairs skin wound healing. The Journal of Cell Biology, 177(1), 163–172. doi:10.1083/jcb.200606043.

    PubMed  CAS  Google Scholar 

  82. Philippar, U., Schratt, G., Dieterich, C., Muller, J. M., Galgoczy, P., Engel, F. B., et al. (2004). The SRF target gene Fhl2 antagonizes RhoA/MAL-dependent activation of SRF. Molecular Cell, 16(6), 867–880.

    PubMed  CAS  Google Scholar 

  83. Sepulveda, J. L., Vlahopoulos, S., Iyer, D., Belaguli, N., & Schwartz, R. J. (2002). Combinatorial expression of GATA4, Nkx2-5, and serum response factor directs early cardiac gene activity. Journal of Biological Chemistry, 277(28), 25775–25782. doi:10.1074/jbc.M203122200.

    PubMed  CAS  Google Scholar 

  84. Miralles, F., & Visa, N. (2006). Actin in transcription and transcription regulation. Current Opinion in Cell Biology, 18(3), 261–266. doi:10.1016/j.ceb.2006.04.009.

    PubMed  CAS  Google Scholar 

  85. Martin, K. A., Gualberto, A., Kolman, M. F., Lowry, J., & Walsh, K. (1997). A competitive mechanism of CArG element regulation by YY1 and SRF: implications for assessment of Phox1/MHox transcription factor interactions at CArG elements. DNA and Cell Biology, 16(5), 653–661.

    PubMed  CAS  Google Scholar 

  86. Chen, C. Y., & Schwartz, R. J. (1997). Competition between negative acting YY1 versus positive acting serum response factor and tinman homologue Nkx-2.5 regulates cardiac alpha-actin promoter activity. Molecular Endocrinology, 11(6), 812–822.

    PubMed  CAS  Google Scholar 

  87. Ellis, P. D., Martin, K. M., Rickman, C., Metcalfe, J. C., & Kemp, P. R. (2002). Increased actin polymerization reduces the inhibition of serum response factor activity by Yin Yang 1. The Biochemical Journal, 364(Pt 2), 547–554. doi:10.1042/BJ20020269.

    PubMed  CAS  Google Scholar 

  88. Somogyi, K., & Rorth, P. (2004). Evidence for tension-based regulation of Drosophila MAL and SRF during invasive cell migration. Developmental Cell, 7(1), 85–93. doi:10.1016/j.devcel.2004.05.020.

    PubMed  CAS  Google Scholar 

  89. Han, Z., Li, X., Wu, J., & Olson, E. N. (2004). A myocardin-related transcription factor regulates activity of serum response factor in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12567–12572. doi:10.1073/pnas.0405085101.

    PubMed  CAS  Google Scholar 

  90. Li, J., Zhu, X., Chen, M., Cheng, L., Zhou, D., Lu, M. M., et al. (2005). Myocardin-related transcription factor B is required in cardiac neural crest for smooth muscle differentiation and cardiovascular development. Proceedings of the National Academy of Sciences of the United States of America, 102(25), 8916–8921. doi:10.1073/pnas.0503741102.

    PubMed  CAS  Google Scholar 

  91. Oh, J., Richardson, J. A., & Olson, E. N. (2005). Requirement of myocardin-related transcription factor-B for remodeling of branchial arch arteries and smooth muscle differentiation. Proceedings of the National Academy of Sciences of the United States of America, 102(42), 15122–15127.

    PubMed  CAS  Google Scholar 

  92. Mokalled, M. H., Johnson, A., Kim, Y., Oh, J., & Olson, E. N. (2010). Myocardin-related transcription factors regulate the Cdk5/Pctaire1 kinase cascade to control neurite outgrowth, neuronal migration and brain development. Development, 137(14), 2365–2374. doi:10.1242/dev.047605.

    PubMed  CAS  Google Scholar 

  93. Li, S., Chang, S., Qi, X., Richardson, J. A., & Olson, E. N. (2006). Requirement of a myocardin-related transcription factor for development of mammary myoepithelial cells. Molecular and Cellular Biology, 26(15), 5797–5808.

    PubMed  CAS  Google Scholar 

  94. Sun, Y., Boyd, K., Xu, W., Ma, J., Jackson, C. W., Fu, A., et al. (2006). Acute myeloid leukemia-associated Mkl1 (Mrtf-a) is a key regulator of mammary gland function. Molecular and Cellular Biology, 26(15), 5809–5826. doi:10.1128/MCB.00024-06.

    PubMed  CAS  Google Scholar 

  95. Rikitake, Y., Oyama, N., Wang, C. Y., Noma, K., Satoh, M., Kim, H. H., et al. (2005). Decreased perivascular fibrosis but not cardiac hypertrophy in ROCK1+/− haploinsufficient mice. Circulation, 112(19), 2959–2965. doi:10.1161/CIRCULATIONAHA.105.584623.

    PubMed  CAS  Google Scholar 

  96. Haudek, S. B., Gupta, D., Dewald, O., Schwartz, R. J., Wei, L., Trial, J., et al. (2009). Rho kinase-1 mediates cardiac fibrosis by regulating fibroblast precursor cell differentiation. Cardiovascular Research, 83(3), 511–518. doi:10.1093/cvr/cvp135.

    PubMed  CAS  Google Scholar 

  97. Hamid, S. A., Bower, H. S., & Baxter, G. F. (2007). Rho kinase activation plays a major role as a mediator of irreversible injury in reperfused myocardium. American Journal of Physiology—Heart and Circulatory Physiology, 292(6), H2598–H2606.

    PubMed  CAS  Google Scholar 

  98. Zhang, Y. M., Bo, J., Taffet, G. E., Chang, J., Shi, J., Reddy, A. K., et al. (2006). Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. The FASEB Journal, 20(7), 916–925.

    CAS  Google Scholar 

  99. Haudek, S. B., Xia, Y., Huebener, P., Lee, J. M., Carlson, S., Crawford, J. R., et al. (2006). Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18284–18289. doi:10.1073/pnas.0608799103.

    PubMed  CAS  Google Scholar 

  100. Allingham, J. S., Klenchin, V. A., & Rayment, I. (2006). Actin-targeting natural products: structures, properties and mechanisms of action. Cellular and Molecular Life Sciences: CMLS, 63(18), 2119–2134. doi:10.1007/s00018-006-6157-9.

    PubMed  CAS  Google Scholar 

  101. Hattori, T., Shimokawa, H., Higashi, M., Hiroki, J., Mukai, Y., Tsutsui, H., et al. (2004). Long-term inhibition of Rho-kinase suppresses left ventricular remodeling after myocardial infarction in mice. Circulation, 109(18), 2234–2239.

    PubMed  CAS  Google Scholar 

  102. Satoh, S., Ikegaki, I., Toshima, Y., Watanabe, A., Asano, T., & Shimokawa, H. (2002). Effects of Rho-kinase inhibitor on vasopressin-induced chronic myocardial damage in rats. Life Sciences, 72(1), 103–112.

    PubMed  CAS  Google Scholar 

  103. Yusuf, S., Sleight, P., Pogue, J., Bosch, J., Davies, R., & Dagenais, G. (2000). Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. The New England Journal of Medicine, 342(3), 145–153.

    PubMed  CAS  Google Scholar 

  104. Varga, J., & Pasche, B. (2009). Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nature Reviews. Rheumatology, 5(4), 200–206. doi:10.1038/nrrheum.2009.26.

    PubMed  CAS  Google Scholar 

  105. Fukumoto, Y., Matoba, T., Ito, A., Tanaka, H., Kishi, T., Hayashidani, S., et al. (2005). Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart, 91(3), 391–392.

    PubMed  CAS  Google Scholar 

  106. Kishi, T., Hirooka, Y., Masumoto, A., Ito, K., Kimura, Y., Inokuchi, K., et al. (2005). Rho-kinase inhibitor improves increased vascular resistance and impaired vasodilation of the forearm in patients with heart failure. Circulation, 111(21), 2741–2747.

    PubMed  CAS  Google Scholar 

  107. Masumoto, A., Mohri, M., Shimokawa, H., Urakami, L., Usui, M., & Takeshita, A. (2002). Suppression of coronary artery spasm by the Rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation, 105(13), 1545–1547.

    PubMed  CAS  Google Scholar 

  108. Ieda, M., Tsuchihashi, T., Ivey, K. N., Ross, R. S., Hong, T. T., Shaw, R. M., et al. (2009). Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Developmental Cell, 16(2), 233–244. doi:10.1016/j.devcel.2008.12.007.

    PubMed  CAS  Google Scholar 

  109. Qian, L., Huang, Y., Spencer, C. I., Foley, A., Vedantham, V., Liu, L., et al. (2012). In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. doi:10.1038/nature11044.

  110. Song, K., Nam, Y. J., Luo, X., Qi, X., Tan, W., Huang, G. N., et al. (2012). Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature, 485(7400), 599–604. doi:10.1038/nature11139.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I apologize to the many researchers whose work could not be cited owing to space restrictions. I thank Joe Miano for discussions and comments on the manuscript. This work was funded in part by a Scientist Development Grant from The American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M. Small.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Small, E.M. The Actin–MRTF–SRF Gene Regulatory Axis and Myofibroblast Differentiation. J. of Cardiovasc. Trans. Res. 5, 794–804 (2012). https://doi.org/10.1007/s12265-012-9397-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9397-0

Keywords

Navigation