Skip to main content

Advertisement

Log in

Ventral medial prefrontal functional connectivity and emotion regulation in chronic schizophrenia: A pilot study

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

People with schizophrenia exhibit impaired social cognitive functions, particularly emotion regulation. Abnormal activations of the ventral medial prefrontal cortex (vMPFC) during emotional tasks have been demonstrated in schizophrenia, suggesting its important role in emotion processing in patients. We used the resting-state functional connectivity approach, setting a functionally relevant region, the vMPFC, as a seed region to examine the intrinsic functional interactions and communication between the vMPFC and other brain regions in schizophrenic patients. We found hypo-connectivity between the vMPFC and the medial frontal cortex, right middle temporal lobe (MTL), right hippocampus, parahippocampal cortex (PHC) and amygdala. Further, there was a decreased strength of the negative connectivity (or anticorrelation) between the vMPFC and the bilateral dorsal lateral prefrontal cortex (DLPFC) and pre-supplementary motor areas. Among these connectivity alterations, reduced vMPFC-DLPFC connectivity was positively correlated with positive symptoms on the Positive and Negative Syndrome Scale, while vMPFC-right MTL/PHC/amygdala functional connectivity was positively correlated with the performance of emotional regulation in patients. These findings imply that communication and coordination throughout the brain networks are disrupted in schizophrenia. The emotional correlates of vMPFC connectivity suggest a role of the hypo-connectivity between these regions in the neuropathology of abnormal social cognition in chronic schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Green MF, Bearden CE, Cannon TD, Fiske AP, Hellemann GS, Horan WP, et al. Social cognition in schizophrenia, Part 1: performance across phase of illness. Schizophr Bull 2012, 38(4): 854–864.

    PubMed  Google Scholar 

  2. Ziv I, Leiser D, Levine J. Social cognition in schizophrenia: cognitive and affective factors. Cogn Neuropsychiatry 2011, 16: 71–91.

    PubMed  Google Scholar 

  3. Gross JJ. Emotion Regulation: Past, Present, Future. Cogn Emot 1999, 13: 551–573.

    Google Scholar 

  4. Bleuler E. Dementia Praecox oder die Gruppe der Schizophrenien. Leipzig: Aschaffenburgs Handbuch, Deutike, 1911. (English edition: Bleuler E. (Trans. J. Zinkin). Dementia praecox or the group of schizophrenias. New York, NY: New York International Universities Press, 1950.).

    Google Scholar 

  5. Amodio DM, Frith CD. Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci 2006, 7: 268–277.

    PubMed  CAS  Google Scholar 

  6. Ongur D, Ferry AT, Price JL. Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 2003, 460: 425–449.

    PubMed  Google Scholar 

  7. Young MP, Scannell JW, Burns GA, Blakemore C. Analysis of connectivity: neural systems in the cerebral cortex. Rev Neurosci 1994, 5: 227–250.

    PubMed  CAS  Google Scholar 

  8. Ongur D, Price JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 2000, 10: 206–219.

    PubMed  CAS  Google Scholar 

  9. Damasio AR. Descartes’ error and the future of human life. Sci Am 1994, 271: 144.

    PubMed  CAS  Google Scholar 

  10. Bechara A, Tranel D, Damasio H. Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain 2000, 123(Pt 11): 2189–2202.

    PubMed  Google Scholar 

  11. Grossman M, Eslinger PJ, Troiani V, Anderson C, Avants B, Gee JC, et al. The role of ventral medial prefrontal cortex in social decisions: converging evidence from fMRI and frontotemporal lobar degeneration. Neuropsychologia 2010, 48: 3505–3512.

    PubMed  Google Scholar 

  12. van den Bos W, Guroglu B. The role of the ventral medial prefrontal cortex in social decision making. J Neurosci 2009, 29: 7631–7632.

    PubMed  Google Scholar 

  13. Koenigs M, Tranel D. Irrational economic decision-making after ventromedial prefrontal damage: evidence from the Ultimatum Game. J Neurosci 2007, 27: 951–956.

    PubMed  CAS  Google Scholar 

  14. Moretti L, Dragone D, di Pellegrino G. Reward and social valuation deficits following ventromedial prefrontal damage. J Cogn Neurosci 2009, 21: 128–140.

    PubMed  Google Scholar 

  15. Krajbich I, Adolphs R, Tranel D, Denburg NL, Camerer CF. Economic games quantify diminished sense of guilt in patients with damage to the prefrontal cortex. J Neurosci 2009, 29: 2188–2192.

    PubMed  CAS  Google Scholar 

  16. Harrison BJ, Yucel M, Pujol J, Pantelis C. Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophr Res 2007, 91: 82–86.

    PubMed  Google Scholar 

  17. Taylor SF, Welsh RC, Chen AC, Velander AJ, Liberzon I. Medial frontal hyperactivity in reality distortion. Biol Psychiatry 2007, 61: 1171–1178.

    PubMed  Google Scholar 

  18. Park IH, Park HJ, Chun JW, Kim EY, Kim JJ. Dysfunctional modulation of emotional interference in the medial prefrontal cortex in patients with schizophrenia. Neurosci Lett 2008, 440: 119–124.

    PubMed  CAS  Google Scholar 

  19. Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception II: Implications for major psychiatric disorders. Biol Psychiatry 2003, 54: 515–528.

    PubMed  Google Scholar 

  20. Aleman A, Kahn RS. Strange feelings: do amygdala abnormalities dysregulate the emotional brain in schizophrenia? Prog Neurobiol 2005, 77: 283–298.

    PubMed  Google Scholar 

  21. Bleuler E. Dementia praecox or the group of schizophrenias. Vertex 2010, 21: 394–400. [Article in Spanish]

    PubMed  Google Scholar 

  22. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995, 34: 537–541.

    PubMed  CAS  Google Scholar 

  23. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 2003, 100: 253–258.

    PubMed  CAS  Google Scholar 

  24. Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, et al. The oscillating brain: complex and reliable. Neuroimage 2010, 49: 1432–1445.

    PubMed  Google Scholar 

  25. Zuo XN, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP. Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. Neuroimage 2010, 49: 2163–2177.

    PubMed  Google Scholar 

  26. Shehzad Z, Kelly AM, Reiss PT, Gee DG, Gotimer K, Uddin LQ, et al. The resting brain: unconstrained yet reliable. Cereb Cortex 2009, 19: 2209–2229.

    PubMed  Google Scholar 

  27. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al. Toward discovery science of human brain function. Proc Natl Acad Sci U S A 2010, 107: 4734–4739.

    PubMed  CAS  Google Scholar 

  28. Friston KJ, Frith CD. Schizophrenia: a disconnection syndrome? Clin Neurosci 1995, 3: 89–97.

    PubMed  CAS  Google Scholar 

  29. Andreasen NC, Nopoulos P, O’Leary DS, Miller DD, Wassink T, Flaum M. Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biol Psychiatry 1999, 46: 908–920.

    PubMed  CAS  Google Scholar 

  30. Liang M, Zhou Y, Jiang T, Liu Z, Tian L, Liu H, et al. Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport 2006, 17: 209–213.

    PubMed  Google Scholar 

  31. Lawrie SM, Buechel C, Whalley HC, Frith CD, Friston KJ, Johnstone EC. Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biol Psychiatry 2002, 51: 1008–1011.

    PubMed  Google Scholar 

  32. Williamson P. Are anticorrelated networks in the brain relevant to schizophrenia? Schizophr Bull 2007, 33: 994–1003.

    PubMed  Google Scholar 

  33. Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K, Neufeld RW, et al. Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr Bull 2007, 33: 1004–1012.

    PubMed  Google Scholar 

  34. Zhou Y, Liang M, Jiang T, Tian L, Liu Y, Liu Z, et al. Functional dysconnectivity of the dorsolateral prefrontal cortex in firstepisode schizophrenia using resting-state fMRI. Neurosci Lett 2007, 417: 297–302.

    PubMed  CAS  Google Scholar 

  35. Liu H, Kaneko Y, Ouyang X, Li L, Hao Y, Chen EY, et al. Schizophrenic patients and their unaffected siblings share increased resting-state connectivity in the task-negative network but not its anticorrelated task-positive network. Schizophr Bull 2012, 38(2): 285–294.

    PubMed  Google Scholar 

  36. Hoptman MJ, D’Angelo D, Catalano D, Mauro CJ, Shehzad ZE, Kelly AM, et al. Amygdalofrontal functional disconnectivity and aggression in schizophrenia. Schizophr Bull 2010, 36: 1020–1028.

    PubMed  Google Scholar 

  37. Davidson RJ, Putnam KM, Larson CL. Dysfunction in the neural circuitry of emotion regulation—a possible prelude to violence. Science 2000, 289: 591–594.

    PubMed  CAS  Google Scholar 

  38. American Psychiatric Association. Practice guideline for the treatment of patients with schizophrenia. Am J Psychiatry 1997, 154: 1–63.

    Google Scholar 

  39. Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987, 13: 261–276.

    PubMed  CAS  Google Scholar 

  40. He YL, Zhang MY. The Chinese norm and factors analysis of PANSS. Chin J Clin Psychol 2000, 8: 65–69.

    Google Scholar 

  41. Mayer JD, Salovey PS, Caruso DR. Mayer-Salovey-Caruso Emotional Intelligence Test User’s Manual (MESCEIT) Item Booklet. Toronto, Ontario: MHS Publishers, 2002.

    Google Scholar 

  42. Eack SM, Greeno CG, Pogue-Geile MF, Newhill CE, Hogarty GE, Keshavan MS. Assessing social-cognitive deficits in schizophrenia with the Mayer-Salovey-Caruso Emotional Intelligence Test. Schizophr Bull 2010, 36: 370–380.

    PubMed  Google Scholar 

  43. Green MF, Olivier B, Crawley JN, Penn DL, Silverstein S. Social cognition in schizophrenia: recommendations from the measurement and treatment research to improve cognition in schizophrenia new approaches conference. Schizophr Bull 2005, 31: 882–887.

    PubMed  Google Scholar 

  44. Nuechterlein KH, Green MF, Kern RS, Baade LE, Barch DM, Cohen JD, et al. The MATRICS Consensus Cognitive Battery, part 1: test selection, reliability, and validity. Am J Psychiatry 2008, 165: 203–213.

    PubMed  Google Scholar 

  45. Kern RS, Nuechterlein KH, Green MF, Baade LE, Fenton WS, Gold JM, et al. The MATRICS Consensus Cognitive Battery, part 2: co-norming and standardization. Am J Psychiatry 2008, 165: 214–220.

    PubMed  Google Scholar 

  46. Stern RA, White T. Neuropsychological Assessment Battery: Administration, Scoring, and Interpretation Manual. Lutz, FL: Psychological Assessment Resources, Inc., 2003.

    Google Scholar 

  47. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 1996, 29: 162–173.

    PubMed  CAS  Google Scholar 

  48. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004, 23(Suppl 1): S208–219.

    PubMed  Google Scholar 

  49. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 2000, 97: 11050–11055.

    PubMed  CAS  Google Scholar 

  50. Manjon JV, Coupe P, Marti-Bonmati L, Collins DL, Robles M. Adaptive non-local means denoising of MR images with spatially varying noise levels. J Magn Reson Imaging 2010, 31: 192–203.

    PubMed  Google Scholar 

  51. Xing XX, Zhou YL, Adelstein JS, Zuo XN. PDE-based spatial smoothing: a practical demonstration of impacts on MRI brain extraction, tissue segmentation and registration. Magn Reson Imaging 2011, 29: 731–738.

    PubMed  Google Scholar 

  52. Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, et al. A hybrid approach to the skull stripping problem in MRI. Neuroimage 2004, 22: 1060–1075.

    PubMed  CAS  Google Scholar 

  53. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002, 33: 341–355.

    PubMed  CAS  Google Scholar 

  54. Fischl B, Salat DH, van der Kouwe AJ, Makris N, Segonne F, Quinn BT, et al. Sequence-independent segmentation of magnetic resonance images. Neuroimage 2004, 23(Suppl 1): S69–84.

    PubMed  Google Scholar 

  55. Andersson JLR, Jenkinson M, Smith S. Non-linear registration, aka spatial normalisation. FMRIB Analysis Group Technical Reports, 2007. http://www.fmrib.ox.ac.uk/analysis/techrep/.

  56. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002, 17: 825–841.

    PubMed  Google Scholar 

  57. Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal 2001, 5: 143–156.

    PubMed  CAS  Google Scholar 

  58. Diekhof EK, Geier K, Falkai P, Gruber O. Fear is only as deep as the mind allows: a coordinate-based meta-analysis of neuroimaging studies on the regulation of negative affect. Neuroimage 2011, 58: 275–285.

    PubMed  Google Scholar 

  59. Van Dijk KR, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 2012, 59: 431–438.

    PubMed  Google Scholar 

  60. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 2012, 59(3): 2142–2154.

    PubMed  Google Scholar 

  61. Zuo XN, Kelly C, Di Martino A, Mennes M, Margulies DS, Bangaru S, et al. Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci 2010, 30: 15034–15043.

    PubMed  CAS  Google Scholar 

  62. Zuo XN, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O, et al. Network centrality in the human functional connectome. Cereb Cortex 2012, 22(8): 1862–1875.

    PubMed  Google Scholar 

  63. Lui S, Li T, Deng W, Jiang L, Wu Q, Tang H, et al. Shortterm effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by “resting state” functional magnetic resonance imaging. Arch Gen Psychiatry 2010, 67: 783–792.

    PubMed  Google Scholar 

  64. Schlee W, Leirer V, Kolassa IT, Weisz N, Elbert T. Age-related changes in neural functional connectivity and its behavioral relevance. BMC Neurosci 2012, 13: 16.

    PubMed  Google Scholar 

  65. Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL. Functional-anatomic fractionation of the brain’s default network. Neuron 2010, 65: 550–562.

    PubMed  CAS  Google Scholar 

  66. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005, 102: 9673–9678.

    PubMed  CAS  Google Scholar 

  67. Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 2005, 26: 15–29.

    PubMed  Google Scholar 

  68. Camchong J, Macdonald AW 3rd, Bell C, Mueller BA, Lim KO. Altered functional and anatomical connectivity in schizophrenia. Schizophr Bull 2011, 37(3): 640–650.

    PubMed  Google Scholar 

  69. Rotarska-Jagiela A, van de Ven V, Oertel-Knochel V, Uhlhaas PJ, Vogeley K, Linden DE. Resting-state functional network correlates of psychotic symptoms in schizophrenia. Schizophr Res 2010, 117: 21–30.

    PubMed  Google Scholar 

  70. Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K, Neufeld RW, et al. Retrosplenial cortex connectivity in schizophrenia. Psychiatry Res 2009, 174: 17–23.

    PubMed  Google Scholar 

  71. Pomarol-Clotet E, Canales-Rodriguez EJ, Salvador R, Sarro S, Gomar JJ, Vila F, et al. Medial prefrontal cortex pathology in schizophrenia as revealed by convergent findings from multimodal imaging. Mol Psychiatry 2010, 15: 823–830.

    PubMed  CAS  Google Scholar 

  72. Mannell MV, Franco AR, Calhoun VD, Canive JM, Thoma RJ, Mayer AR. Resting state and task-induced deactivation: A methodological comparison in patients with schizophrenia and healthy controls. Hum Brain Mapp 2010, 31: 424–437.

    PubMed  Google Scholar 

  73. Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD. Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry 2007, 164: 450–457.

    PubMed  Google Scholar 

  74. Park S, Thakkar KN. “Splitting of the mind” revisited: recent neuroimaging evidence for functional dysconnection in schizophrenia and its relation to symptoms. Am J Psychiatry 2010, 167: 366–368.

    PubMed  Google Scholar 

  75. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008, 1124: 1–38.

    PubMed  Google Scholar 

  76. Fletcher P, McKenna PJ, Friston KJ, Frith CD, Dolan RJ. Abnormal cingulate modulation of fronto-temporal connectivity in schizophrenia. Neuroimage 1999, 9: 337–342.

    PubMed  CAS  Google Scholar 

  77. Friston KJ. Schizophrenia and the disconnection hypothesis. Acta Psychiatr Scand Suppl 1999, 395: 68–79.

    PubMed  CAS  Google Scholar 

  78. Kubicki M, Westin CF, Maier SE, Frumin M, Nestor PG, Salisbury DF, et al. Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study. Am J Psychiatry 2002, 159: 813–820.

    PubMed  Google Scholar 

  79. Ellison-Wright I, Bullmore E. Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res 2009, 108: 3–10.

    PubMed  Google Scholar 

  80. Meyer-Lindenberg A, Poline JB, Kohn PD, Holt JL, Egan MF, Weinberger DR, et al. Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiatry 2001, 158: 1809–1817.

    PubMed  CAS  Google Scholar 

  81. Ford JM, Mathalon DH, Whitfield S, Faustman WO, Roth WT. Reduced communication between frontal and temporal lobes during talking in schizophrenia. Biol Psychiatry 2002, 51: 485–492.

    PubMed  Google Scholar 

  82. Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, et al. Hyperactivity and hyperco-nnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A 2009, 106: 1279–1284.

    PubMed  CAS  Google Scholar 

  83. Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. Competition between functional brain networks mediates behavioral variability. Neuroimage 2008, 39: 527–537.

    PubMed  Google Scholar 

  84. McKiernan KA, Kaufman JN, Kucera-Thompson J, Binder JR. A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 2003, 15: 394–408.

    PubMed  Google Scholar 

  85. Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 2009, 101: 3270–3283.

    PubMed  Google Scholar 

  86. Stevens MC. The developmental cognitive neuroscience of functional connectivity. Brain Cogn 2009, 70: 1–12.

    PubMed  Google Scholar 

  87. Gee DG, Biswal BB, Kelly C, Stark DE, Margulies DS, Shehzad Z, et al. Low frequency fluctuations reveal integrated and segregated processing among the cerebral hemispheres. Neuroimage 2011, 54: 517–527.

    PubMed  Google Scholar 

  88. Fair DA, Dosenbach NU, Church JA, Cohen AL, Brahmbhatt S, Miezin FM, et al. Development of distinct control networks through segregation and integration. Proc Natl Acad Sci U S A 2007, 104: 13507–13512.

    PubMed  CAS  Google Scholar 

  89. Callicott JH, Mattay VS, Verchinski BA, Marenco S, Egan MF, Weinberger DR. Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry 2003, 160: 2209–2215.

    PubMed  Google Scholar 

  90. Potkin SG, Turner JA, Brown GG, McCarthy G, Greve DN, Glover GH, et al. Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. Schizophr Bull 2009, 35: 19–31.

    PubMed  CAS  Google Scholar 

  91. Andreasen NC, O’Leary DS, Cizadlo T, Arndt S, Rezai K, Ponto LL, et al. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci U S A 1996, 93: 9985–9990.

    PubMed  CAS  Google Scholar 

  92. Weinberger DR, Berman KF, Zec RF. Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 1986, 43: 114–124.

    PubMed  CAS  Google Scholar 

  93. Chai XJ, Whitfield-Gabrieli S, Shinn AK, Gabrieli JD, Nieto Castanon A, McCarthy JM, et al. Abnormal medial prefrontal cortex resting-state connectivity in bipolar disorder and schizophrenia. Neuropsychopharmacology 2011, 36(10): 2009–2017.

    PubMed  Google Scholar 

  94. Ghashghaei HT, Barbas H. Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 2002, 115: 1261–1279.

    PubMed  CAS  Google Scholar 

  95. Gilbert SJ, Spengler S, Simons JS, Frith CD, Burgess PW. Differential functions of lateral and medial rostral prefrontal cortex (area 10) revealed by brain-behavior associations. Cereb Cortex 2006, 16: 1783–1789.

    PubMed  Google Scholar 

  96. Phelps EA. Emotion and cognition: insights from studies of the human amygdala. Annu Rev Psychol 2006, 57: 27–53.

    PubMed  Google Scholar 

  97. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 2009, 33: 279–296.

    PubMed  Google Scholar 

  98. Barch DM. The cognitive neuroscience of schizophrenia. Annu Rev Clin Psychol 2005, 1: 321–353.

    PubMed  Google Scholar 

  99. Cabeza R, Nyberg L. Imaging cognition II: An empirical review of 275 PET and fMRI studies. J Cogn Neurosci 2000, 12: 1–47.

    PubMed  CAS  Google Scholar 

  100. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 2002, 3: 201–215.

    PubMed  CAS  Google Scholar 

  101. D’Argembeau A, Collette F, Van der Linden M, Laureys S, Del Fiore G, Degueldre C, et al. Self-referential reflective activity and its relationship with rest: a PET study. Neuroimage 2005, 25: 616–624.

    PubMed  Google Scholar 

  102. Gusnard DA, Akbudak E, Shulman GL, Raichle ME. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A 2001, 98: 4259–4264.

    PubMed  CAS  Google Scholar 

  103. Friston K. Functional integration and inference in the brain. Prog Neurobiol 2002, 68: 113–143.

    PubMed  Google Scholar 

  104. Lepage M, Sergerie K, Benoit A, Czechowska Y, Dickie E, Armony JL. Emotional face processing and flat affect in schizophrenia: functional and structural neural correlates. Psychol Med 2011: 1–12.

  105. Kang JI, Kim JJ, Seok JH, Chun JW, Lee SK, Park HJ. Abnormal brain response during the auditory emotional processing in schizophrenic patients with chronic auditory hallucinations. Schizophr Res 2009, 107: 83–91.

    PubMed  Google Scholar 

  106. Anticevic A, Repovs G, Barch DM. Emotion effects on attention, amygdala activation, and functional connectivity in schizophrenia. Schizophr Bull 2012, 38(5): 967–80

    PubMed  Google Scholar 

  107. van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE. Efficiency of functional brain networks and intellectual performance. J Neurosci 2009, 29: 7619–7624.

    PubMed  Google Scholar 

  108. Li Y, Liu Y, Li J, Qin W, Li K, Yu C, et al. Brain anatomical network and intelligence. PLoS Comput Biol 2009, 5: e1000395.

    PubMed  Google Scholar 

  109. Marrelec G, Fransson P. Assessing the influence of different ROI selection strategies on functional connectivity analyses of fMRI data acquired during steady-state conditions. PLoS One 2011, 6: e14788.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-Ping Tan or Yi-Zhuang Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, FM., Tan, SP., Yang, FD. et al. Ventral medial prefrontal functional connectivity and emotion regulation in chronic schizophrenia: A pilot study. Neurosci. Bull. 29, 59–74 (2013). https://doi.org/10.1007/s12264-013-1300-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1300-8

Keywords

Navigation