Skip to main content
Log in

IL-10 Cytokine Released from M2 Macrophages Is Crucial for Analgesic and Anti-inflammatory Effects of Acupuncture in a Model of Inflammatory Muscle Pain

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Muscle pain is a common medical problem that is difficult to treat. One nonpharmacological treatment used is acupuncture, a procedure in which fine needles are inserted into body points with the intent of relieving pain and other symptoms. Here we investigated the effects of manual acupuncture (MA) on modulating macrophage phenotype and interleukin-10 (IL-10) concentrations in animals with muscle inflammation. Carrageenan, injected in the gastrocnemius muscle of mice, induces an inflammatory response characterized by mechanical hyperalgesia and edema. The inflammation is initially a neutrophilic infiltration that converts to a macrophage-dominated inflammation by 48 h. MA of the Sanyinjiao or Spleen 6 (SP6) acupoint reduces nociceptive behaviors, heat, and mechanical hyperalgesia and enhanced escape/avoidance and the accompanying edema. SP6 MA increased muscle IL-10 levels and was ineffective in reducing pain behaviors and edema in IL-10 knockout (IL-10−/−) mice. Repeated daily treatments with SP6 MA induced a phenotypic switch of muscle macrophages with reduced M1 macrophages (pro-inflammatory cells) and an increase of M2 macrophages (anti-inflammatory cells and important IL-10 source). These findings provide new evidence that MA produces a phenotypic switch in macrophages and increases IL-10 concentrations in muscle to reduce pain and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ferrari R, Russell AS (2003) Regional musculoskeletal conditions: neck pain. Best Pract Res Clin Rheumatol 17:57–70. doi:10.1016/S1521-6942(02)00097-9

    Article  PubMed  Google Scholar 

  2. De Santana JM, Sluka KA (2008) Central mechanisms in the maintenance of chronic widespread noninflammatory muscle pain. Curr Pain Headache Rep 12(5):338–343. doi:10.1007/s11916-008-0057-7

    Article  Google Scholar 

  3. Loram LC, Fuller A, Fick LG, Cartmell T, Poole S, Mitchell D (2007) Cytokine profiles during carrageenan-induced inflammatory hyperalgesia in rat muscle and hind paw. J Pain 8:127–136. doi:10.1016/j.jpain.2006.06.010

    Article  CAS  PubMed  Google Scholar 

  4. Radhakrishnan R, Moore SA, Sluka KA (2003) Unilateral carrageenan injection into muscle or joint induces chronic bilateral hyperalgesia in rats. Pain 104:567–577. doi:10.1016/S0304-3959(03)00114-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Philippou A, Maridaki M, Theos A, Koutsilieris M (2012) Cytokines in muscle damage. Adv Clin Chem 58:49–87

    Article  CAS  PubMed  Google Scholar 

  6. Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11:750–761. doi:10.1038/nri3088

    Article  CAS  PubMed  Google Scholar 

  7. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737. doi:10.1038/nri3073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Sutterwala FS, Noel GJ, Clynes R, Mosser DM (1997) Selective suppression of interleukin-12 induction after macrophage receptor ligation. J Exp Med 185:1977–1985. doi:10.1084/jem.185.11.1977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Sutterwala FS, Noel GJ, Salgame P, Mosser DM (1998) Reversal of proinflammatory responses by ligating the macrophage Fcgamma receptor type I. J Exp Med 188:217–222. doi:10.1084/jem.188.1.217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into anti-inflammatory macrophages to support myogenesis. J Exp Med 204:1057–1069. doi:10.1084/jem.20070075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cheng RS, Pomeranz B (1981) Monoaminergic mechanism of electroacupuncture analgesia. Brain Res 215:77–92. doi:10.1016/0006-8993(81)90492-3

    Article  CAS  PubMed  Google Scholar 

  12. Cho ZH, Hwang SC, Wong EK, Son YD, Kang CK, Park TS, Bai SJ, Kim YB, Lee YB, Sung KK, Lee BH, Shepp LA, Min KT (2006) Neural substrates, experimental evidences and functional hypothesis of acupuncture mechanisms. Acta Neurol Scand 113:370–377. doi:10.1111/j.1600-0404.2006.00600.x

    Article  CAS  PubMed  Google Scholar 

  13. Goldman N, Chen M, Fujita T, Xu Q, Peng W, Liu W, Jensen TK, Pei Y, Wang F, Han X, Chen JF, Schnermann J, Takano T, Bekar L, Tieu K, Nedergaard M (2010) Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nat Neurosci 13:883–888. doi:10.1038/nn.2562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Zhao ZQ (2008) Neural mechanism underlying acupuncture analgesia. Prog Neurobiol 85:355–375. doi:10.1016/j.pneurobio.2008.05.004

    Article  PubMed  Google Scholar 

  15. Zhang ZJ, Wang XM, Mcalonan GM (2012) Neural acupuncture unit: a new concept for interpreting effects and mechanisms of acupuncture. Evid Based Complement Alternat Med 2012:429412. doi:10.1155/2012/429412

    PubMed Central  PubMed  Google Scholar 

  16. da Silva MD, Guginski G, Werner MF, Baggio CH, Marcon R, Santos AR (2011) Involvement of interleukin-10 in the anti-inflammatory effect of Sanyinjiao (SP6) acupuncture in a mouse model of peritonitis. Evid Based Complement Alternat Med 2011:217946. doi:10.1093/ecam/neq036

    Article  PubMed Central  PubMed  Google Scholar 

  17. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110. doi:10.1016/0304-3959(83)90201-4

    Article  CAS  PubMed  Google Scholar 

  18. Walder RY, Rasmussen LA, Rainier JD, Light AR, Wemmie JA, Sluka KA (2010) ASIC1 and ASIC3 play different roles in the development of hyperalgesia after inflammatory muscle injury. J Pain 11:210–218. doi:10.1016/j.jpain.2009.07.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Yin CS, Jeong HS, Park HJ, Baik Y, Yoon MH, Choi CB, Koh HG (2008) A proposed transpositional acupoint system in a mouse and rat model. Res Vet Sci 84:159–165. doi:10.1016/j.rvsc.2007.04.004

    Article  PubMed  Google Scholar 

  20. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63. doi:10.1016/0165-0270(94)90144-9

    Article  CAS  PubMed  Google Scholar 

  21. Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462. doi:10.1146/annurev.pa.20.040180.002301

    Article  CAS  PubMed  Google Scholar 

  22. Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–88. doi:10.1016/0304-3959(88)90026-7

    Article  CAS  PubMed  Google Scholar 

  23. Kehl LJ, Trempe TM, Hargreaves KM (2000) A new animal model for assessing mechanisms and management of muscle hyperalgesia. Pain 85:333–343. doi:10.1016/S0304-3959(99)00282-1

    Article  CAS  PubMed  Google Scholar 

  24. Pratt D, Fuchs PN, Sluka KA (2013) Assessment of avoidance behaviors in mouse models of muscle pain. Neuroscience 248C:54–60. doi:10.1016/j.neuroscience.2013.05.058

    Article  Google Scholar 

  25. Davies LC, Jenkins SJ, Allen JE, Taylor PR (2013) Tissue-resident macrophages. Nat Immunol 14(10):986–995. doi:10.1038/ni.2705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Laughlin TM, Bethea JR, Yezierski RP, Wilcox GL (2000) Cytokine involvement in dynorphin-induced allodynia. Pain 84(2–3):159–167. doi:10.1016/S0304-3959(99)00195-5

    Article  CAS  PubMed  Google Scholar 

  27. Kanaan SA, Poole S, Saadé NE, Jabbur S, Safieh-Garabedian B (1998) Interleukin-10 reduces the endotoxin-induced hyperalgesia in mice. J Neuroimmunol 86(2):142–150. doi:10.1016/S0165-5728(98)00027-7

    Article  CAS  PubMed  Google Scholar 

  28. Lau D, Harte SE, Morrow TJ, Wang S, Mata M, Fink DJ (2012) Herpes simplex virus vector-mediated expression of interleukin-10 reduces below-level central neuropathic pain after spinal cord injury. Neurorehabil Neural Repair 26(7):889–897. doi:10.1177/1545968312445637

    Article  PubMed Central  PubMed  Google Scholar 

  29. Plunkett JA, Yu CG, Easton JM, Bethea JR, Yezierski RP (2001) Effects of interleukin-10 (IL-10) on pain behavior and gene expression following excitotoxic spinal cord injury in the rat. Exp Neurol 168(1):144–154. doi:10.1006/exnr.2000.7604

    Article  CAS  PubMed  Google Scholar 

  30. Tu H, Juelich T, Smith EM, Tyring SK, Rady PL, Hughes TK Jr (2003) Evidence for endogenous interleukin-10 during nociception. J Neuroimmunol 139(1–2):145–149. doi:10.1016/s0165-5728(03)00126-7

    Article  CAS  PubMed  Google Scholar 

  31. Abraham KE, McMillen D, Brewer KL (2004) The effects of endogenous interleukin-10 on gray matter damage and the development of pain behaviors following excitotoxic spinal cord injury in the mouse. Neuroscience 124(4):945–952. doi:10.1016/j.neuroscience.2004.01.004

    Article  CAS  PubMed  Google Scholar 

  32. Shen KF, Zhu HQ, Wei XH, Wang J, Li YY, Pang RP, Liu XG (2013) Interleukin-10 down-regulates voltage gated sodium channels in rat dorsal root ganglion neurons. Exp Neurol 247:466–475. doi:10.1016/j.expneurol.2013.01.018

    Article  CAS  PubMed  Google Scholar 

  33. Vale ML, Marques JB, Moreira CA, Rocha FA, Ferreira SH, Poole S, Cunha FQ, Ribeiro RA (2003) Antinociceptive effects of interleukin-4, -10, and -13 on the writhing response in mice and zymosan-induced knee joint incapacitation in rats. J Pharmacol Exp Ther 304:102–108. doi:10.1124/jpet.102.038703

    Article  CAS  PubMed  Google Scholar 

  34. Laughlin TM, Bethea JR, Yezierski RP, Wilcox GL (2000) Cytokine involvement in dynorphin-induced allodynia. Pain 84:159–167. doi:10.1016/S0304-3959(99)00195-5

    Article  CAS  PubMed  Google Scholar 

  35. Okamoto K, Martin DP, Schmelzer JD, Mitsui Y, Low PA (2001) Pro- and anti-inflammatory cytokine gene expression in rat sciatic nerve chronic constriction injury model of neuropathic pain. Exp Neurol 169:386–391. doi:10.1006/exnr.2001.7677

    Article  CAS  PubMed  Google Scholar 

  36. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969. doi:10.1038/nri2448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Meisel C, Vogt K, Platzer C, Randow F, Liebenthal C, Volk HD (1996) Differential regulation of monocytic tumor necrosis factor-alpha and interleukin-10 expression. Eur J Immunol 26:1580–1586. doi:10.1002/eji.1830260726

    Article  CAS  PubMed  Google Scholar 

  38. Platzer C, Volk HD, Platzer M (1994) 5′ Noncoding sequence of human IL-10 gene obtained by oligo-cassette PCR walking. DNA Seq 4:399–401. doi:10.3109/10425179409010188

    CAS  PubMed  Google Scholar 

  39. Platzer C, Meisel C, Vogt K, Platzer M, Volk HD (1995) Up-regulation of monocytic IL-10 by tumor necrosis factor-alpha and cAMP elevating drugs. Int Immunol 7:517–523. doi:10.1093/intimm/7.4.517

    Article  CAS  PubMed  Google Scholar 

  40. Platzer C, Fritsch E, Elsner T, Lehmann MH, Volk HD, Prösch S (1999) Cyclic adenosine monophosphate-responsive elements are involved in the transcriptional activation of the human IL-10 gene in monocytic cells. Eur J Immunol 29:3098–3104. doi:10.1002/(SICI)1521

    Article  CAS  PubMed  Google Scholar 

  41. Platzer C, Döcke W, Volk H, Prösch S (2000) Catecholamines trigger IL-10 release in acute systemic stress reaction by direct stimulation of its promoter/enhancer activity in monocytic cells. J Neuroimmunol 105:31–38. doi:10.1016/S0165-5728(00)00205-8

    Article  CAS  PubMed  Google Scholar 

  42. Woiciechowsky C, Asadullah K, Nestler D, Eberhardt B, Platzer C, Schöning B, Glöckner F, Lanksch WR, Volk HD, Döcke WD (1998) Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury. Nat Med 4:808–813. doi:10.1038/nm0798-808

    Article  CAS  PubMed  Google Scholar 

  43. Yakeu G, Butcher L, Isa S, Webb R, Roberts AW, Thomas AW, Backx K, James PE, Morris K (2010) Low-intensity exercise enhances expression of markers of alternative activation in circulating leukocytes: roles of PPARγ and Th2 cytokines. Atherosclerosis 212:668–673. doi:10.1016/j.atherosclerosis.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  44. Moore KW, de Waal MR, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765. doi:10.1146/annurev.immunol.19.1.683

    Article  CAS  PubMed  Google Scholar 

  45. Sabat R (2010) IL-10 family of cytokines. Cytokine Growth Factor Rev 21:315–324. doi:10.1016/j.cytogfr.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  46. Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG (2003) TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19:59–70. doi:10.1016/S1074-7613(03)00171-7

    Article  CAS  PubMed  Google Scholar 

  47. Lumeng CN, Deyoung SM, Saltiel AR (2007) Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am J Physiol Endocrinol Metab 292:E166–E174. doi:10.1152/ajpendo.00284.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Porcheray F, Viaud S, Rimaniol AC, Léone C, Samah B, Dereuddre-Bosquet N, Dormont D, Gras G (2005) Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 142:481–489. doi:10.1111/j.1365-2249.2005.02934.x

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311

    Article  CAS  PubMed  Google Scholar 

  50. Ulett GA, Han S, Han JS (1998) Electroacupuncture: mechanisms and clinical application. Biol Psychiatry 44:129–138

    Article  CAS  PubMed  Google Scholar 

  51. Luo F, Wang JY (2008) Modulation of central nociceptive coding by acupoint stimulation. Neurochem Res 33:1950–1955. doi:10.1007/s11064-008-9692-y

    Article  CAS  PubMed  Google Scholar 

  52. Kim SK, Bae H (2010) Acupuncture and immune modulation. Auton Neurosci 157(1-2):38–41. doi:10.1016/j.autneu.2010.03.010

    Article  PubMed  Google Scholar 

  53. Hisamitsu T, Kasahara T, Umezawa T, Ishino T, Hisamitsu T (2002) The effect of acupuncture on natural killer cell activity. Int Congr Ser 1238:125–131. doi:10.3736/jintegrmed2013012

    Article  Google Scholar 

  54. Yu Y, Kasahara T, Sato T, Asano K, Yu G, Fang J, Guo S, Sahara M, Hisamitsu T (1998) Role of endogenous interferon-gamma on the enhancement of splenic NK cell activity by electroacupuncture stimulation in mice. J Neuroimmunol 90:176–186

    Article  CAS  PubMed  Google Scholar 

  55. Chiu JH, Cheng HC, Tai CH, Hseih JC, Yeh TC, Cheng H, Lin JG, Ho LT (2001) Electroacupuncture-induced neural activation detected by use of manganese enhanced functional magnetic resonance imaging in rabbits. Am J Vet Res 62:178–182. doi:10.2460/ajvr.2001.62.178

    Article  CAS  PubMed  Google Scholar 

  56. Choi GS, Oh SD, Han JB, Bae HS, Cho YW, Yun YS, Lee WK, Ahn HJ, Min BI (2002) Modulation of natural killer cell activity affected by electroacupuncture through lateral hypothalamic area in rats. Neurosci Lett 329:1–4. doi:10.1016/S0304-3940(02)00551-7

    Article  CAS  PubMed  Google Scholar 

  57. Patterson SL, Sluka KA, Arnold MA (2001) A novel transverse push-pull microprobe: in vitro characterization and in vivo demonstration of the enzymatic production of adenosine in the spinal cord dorsal horn. J Neurochem 76(1):234–246. doi:10.1046/j.1471-4159.2001.00016.x

    Article  CAS  PubMed  Google Scholar 

  58. Goldman JW, Laux I, Chai F, Savage RE, Ferrari D, Garmey EG, Just RG, Rosen LS (2012) Phase 1 dose-escalation trial evaluating the combination of the selective MET (mesenchymal-epithelial transition factor) inhibitor tivantinib (ARQ 197) plus erlotinib. Cancer 118(23):5903–5911. doi:10.1002/cncr.27575

    Article  CAS  PubMed  Google Scholar 

  59. Dubyak GR (2012) P2X7 receptor regulation of non-classical secretion from immune effector cells. Cell Microbiol 14(11):1697–1706. doi:10.1111/cmi.12001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), Brazil. M.D. Silva, F. Bobinski, and A.R.S. Santos thank the CAPES (regular and by PhD exterior program—CsF) and CNPq, respectively, for their fellowship support. This study was funded in part by the National Institutes of Health grants AR061371 and AR053509 to K.A. Sluka.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adair R. S. Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.D., Bobinski, F., Sato, K.L. et al. IL-10 Cytokine Released from M2 Macrophages Is Crucial for Analgesic and Anti-inflammatory Effects of Acupuncture in a Model of Inflammatory Muscle Pain. Mol Neurobiol 51, 19–31 (2015). https://doi.org/10.1007/s12035-014-8790-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8790-x

Keywords

Navigation