Skip to main content

Advertisement

Log in

Palmitoylation of Nicotinic Acetylcholine Receptors

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

It is well established that nicotinic acetylcholine receptors (nAChRs) undergo a number of different posttranslational modifications, such as disulfide bond formation, glycosylation, and phosphorylation. Recently, our laboratory has developed more sensitive assays of protein palmitoylation that have allowed us and others to detect the palmitoylation of relatively low abundant proteins such as ligand-gated ion channels. Here, we present evidence that palmitoylation is prevalent on many subunits of different nAChR subtypes, both muscle-type nAChRs and the neuronal “α4β2” and “α7” subtypes most abundant in brain. The loss of ligand binding sites that occurs when palmitoylation is blocked with the inhibitor bromopalmitate suggests that palmitoylation of α4β2 and α7 subtypes occurs during subunit assembly and regulates the formation of ligand binding sites. However, additional experiments are needed to test whether nAChR subunit palmitoylation is involved in other aspects of nAChR trafficking or whether palmitoylation regulates nAChR function. Further investigation would be aided by identifying the sites of palmitoylation on the subunits, and here we propose a mass spectrometry strategy for identification of these sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Anand, R., Conroy, W. G., et al. (1991). Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure. Journal of Biological Chemistry, 266(17), 11192–11198.

    CAS  PubMed  Google Scholar 

  • Baekkeskov, S., & Kanaani, J. (2009). Palmitoylation cycles and regulation of protein function (Review). Molecular Membrane Biology, 26(1), 42–54.

    Article  CAS  PubMed  Google Scholar 

  • Benwell, M. E., Balfour, D. J., et al. (1988). Evidence that tobacco smoking increases the density of (−)-[3H]nicotine binding sites in human brain. Journal of Neurochemistry, 50(4), 1243–1247.

    Article  CAS  PubMed  Google Scholar 

  • Camp, L. A., & Hofmann, S. L. (1993). Purification and properties of a palmitoyl-protein thioesterase that cleaves palmitate from H-Ras. Journal of Biological Chemistry, 268(30), 22566–22574.

    CAS  PubMed  Google Scholar 

  • Cody, R. B., & Freiser, B. S. (1982). Collision-induced dissociation in a Fourier-transform mass spectrometer. International Journal or Mass Spectrometry and Ion Physics, 41(3), 199–204.

    Article  CAS  Google Scholar 

  • Cooper, E., Couturier, S., et al. (1991). Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature, 350(6315), 235–238.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, H. J., Heath, J. K., et al. (2004). Identification of sites of ubiquitination in proteins: a Fourier transform ion cyclotron resonance mass spectrometry approach. Analytical Chemistry, 76(23), 6982–6988.

    Article  CAS  PubMed  Google Scholar 

  • Davila-Garcia, M. I., Musachio, J. L., et al. (1997). [125I]IPH, an epibatidine analog, binds with high affinity to neuronal nicotinic cholinergic receptors. Journal of Pharmacology and Experimental Therapeutics, 282(1), 445–451.

    CAS  PubMed  Google Scholar 

  • Drisdel, R. C., & Green, W. N. (2000). Neuronal alpha-bungarotoxin receptors are alpha7 subunit homomers. Journal of Neuroscience, 20(1), 133–139.

    CAS  PubMed  Google Scholar 

  • Drisdel, R. C., & Green, W. N. (2004). Labeling and quantifying sites of protein palmitoylation. Biotechniques, 36(2), 276–285.

    CAS  PubMed  Google Scholar 

  • Drisdel, R. C., Manzana, E., et al. (2004). The role of palmitoylation in functional expression of nicotinic alpha7 receptors. Journal of Neuroscience, 24(46), 10502–10510.

    Article  CAS  PubMed  Google Scholar 

  • el-Husseini Ael, D., & Bredt, D. S. (2002). Protein palmitoylation: A regulator of neuronal development and function. Nature Reviews. Neuroscience, 3(10), 791–802.

    Article  Google Scholar 

  • Flores, C. M., Rogers, S. W., et al. (1992). A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Molecular Pharmacology, 41(1), 31–37.

    CAS  PubMed  Google Scholar 

  • Fong, T. M., & McNamee, M. G. (1986). Correlation between acetylcholine receptor function and structural properties of membranes. Biochemistry, 25(4), 830–840.

    Article  CAS  PubMed  Google Scholar 

  • Green, W. N., & Claudio, T. (1993). Acetylcholine receptor assembly: Subunit folding and oligomerization occur sequentially. Cell, 74(1), 57–69.

    Article  CAS  PubMed  Google Scholar 

  • Hamouda, A. K., Sanghvi, M., et al. (2006). Assessing the lipid requirements of the Torpedo californica nicotinic acetylcholine receptor. Biochemistry, 45(13), 4327–4337.

    Article  CAS  PubMed  Google Scholar 

  • Huang, K., & El-Husseini, A. (2005). Modulation of neuronal protein trafficking and function by palmitoylation. Current Opinion in Neurobiology, 15(5), 527–535.

    Article  CAS  PubMed  Google Scholar 

  • Huang, K., Yanai, A., et al. (2004). Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron, 44(6), 977–986.

    Article  CAS  PubMed  Google Scholar 

  • Karayiorgou, M., & Gogos, J. A. (2004). The molecular genetics of the 22q11-associated schizophrenia. Brain Research. Molecular Brain Research, 132(2), 95–104.

    Article  CAS  PubMed  Google Scholar 

  • Karlin, A., & Akabas, M. H. (1995). Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron, 15(6), 1231–1244.

    Article  CAS  PubMed  Google Scholar 

  • Lam, K. K., Davey, M., et al. (2006). Palmitoylation by the DHHC protein Pfa4 regulates the ER exit of Chs3. Journal of Cell Biology, 174(1), 19–25.

    Article  CAS  PubMed  Google Scholar 

  • Linder, M. E., & Deschenes, R. J. (2004). Model organisms lead the way to protein palmitoyltransferases. Journal of Cell Science, 117(Pt 4), 521–526.

    Article  CAS  PubMed  Google Scholar 

  • Linder, M. E., & Deschenes, R. J. (2007). Palmitoylation: Policing protein stability and traffic. Nature Reviews. Molecular Cell Biology, 8(1), 74–84.

    Article  CAS  PubMed  Google Scholar 

  • Lindstrom, J. M. (1995). Nicotinic acetylcholine receptors. In R. A. North (Ed.), Handbook of receptors and channels. Ligand- and voltage-gated ion channels (pp. 153–175). Boca Raton: CRC.

    Google Scholar 

  • Little, D. P., Speir, J. P., et al. (1994). Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Analytical Chemistry, 66(18), 2809–2815.

    Article  CAS  PubMed  Google Scholar 

  • Margolskee, R. F., McHendry-Rinde, B., et al. (1993). Panning transfected cells for electrophysiological studies. Biotechniques, 15, 906–911.

    CAS  PubMed  Google Scholar 

  • Marks, M. J., Burch, J. B., et al. (1983). Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. Journal of Pharmacology and Experimental Therapeutics, 226(3), 817–825.

    CAS  PubMed  Google Scholar 

  • McGehee, D. S., & Role, L. W. (1995). Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annual Review of Physiology, 57(521), 521–546.

    Article  CAS  PubMed  Google Scholar 

  • McLafferty, F. W., Kelleher, N. L., et al. (1998). Two-dimensional mass spectrometry of biomolecules at the subfemtomole level. Current Opinion in Chemical Biology, 2(5), 571–578.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, D. A., Vasudevan, A., et al. (2006). Protein palmitoylation by a family of DHHC protein S-acyltransferases. Journal of Lipid Research, 47(6), 1118–1127.

    Article  CAS  PubMed  Google Scholar 

  • Nadolski, M. J., & Linder, M. E. (2007). Protein lipidation. FEBS Journal, 274(20), 5202–5210.

    Article  CAS  PubMed  Google Scholar 

  • Olson, E. N., Glaser, L., et al. (1984). Alpha and beta subunits of the nicotinic acetylcholine receptor contain covalently bound lipid. Journal of Biological Chemistry, 259(9), 5364–5367.

    CAS  PubMed  Google Scholar 

  • Pedersen, S. E., Dreyer, E. B., et al. (1986). Location of ligand-binding sites on the nicotinic acetylcholine receptor alpha-subunit. Journal of Biological Chemistry, 261(29), 13735–13743.

    CAS  PubMed  Google Scholar 

  • Resh, M. D. (2004). Membrane targeting of lipid modified signal transduction proteins. Subcellular Biochemistry, 37, 217–232.

    CAS  PubMed  Google Scholar 

  • Roepstorff, P., & Fohlman, J. (1984). Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomedical Mass Spectrometry, 11(11), 601.

    Article  CAS  PubMed  Google Scholar 

  • Roth, A. F., Wan, J., et al. (2006). Global analysis of protein palmitoylation in yeast. Cell, 125(5), 1003–13.

    Article  CAS  PubMed  Google Scholar 

  • Sargent, P. B. (1993). The diversity of neuronal nicotinic acetylcholine receptors. Annual Review of Neuroscience, 16, 403–443.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, R. D., & Kellar, K. J. (1983). Nicotinic cholinergic receptor binding sites in the brain: Regulation in vivo. Science, 220(4593), 214–216.

    Article  CAS  PubMed  Google Scholar 

  • Sidera, C., Parsons, R., et al. (2005). Post-translational processing of beta-secretase in Alzheimer's disease. Proteomics, 5(6), 1533–1543.

    Article  CAS  PubMed  Google Scholar 

  • Smotrys, J. E., & Linder, M. E. (2004). Palmitoylation of intracellular signaling proteins: Regulation and function. Annual Review of Biochemistry, 73, 559–587.

    Article  CAS  PubMed  Google Scholar 

  • Soskic, V., Nyakatura, E., et al. (1999). Correlations in palmitoylation and multiple phosphorylation of rat bradykinin B2 receptor in Chinese hamster ovary cells. Journal of Biological Chemistry, 274(13), 8539–8545.

    Article  CAS  PubMed  Google Scholar 

  • Steinlein, O. K., & Bertrand, D. (2008). Neuronal nicotinic acetylcholine receptors: From the genetic analysis to neurological diseases. Biochemical Pharmacology, 76(10), 1175–1183.

    Article  CAS  PubMed  Google Scholar 

  • Vallejo, Y. F., Buisson, B., et al. (2005). Chronic nicotine exposure upregulates nicotinic receptors by a novel mechanism. Journal of Neuroscience, 25(23), 5563–5572.

    Article  CAS  PubMed  Google Scholar 

  • Wanamaker, C. P., Christianson, J. C., et al. (2003). Regulation of nicotinic acetylcholine receptor assembly. Annals of the New York Academy of Sciences, 998, 66–80.

    Article  CAS  PubMed  Google Scholar 

  • Whiting, P., & Lindstrom, J. (1987). Purification and characterization of a nicotinic acetylcholine receptor from rat brain. Proceedings of the National Academy of Sciences of the United States of America, 84(2), 595–599.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the members of the Green laboratory for discussion and comments about this paper. This work was supported by NIH grants: P30 DA018343 (TL), NS043782, DA019695 and the Peter F. McManus Foundation (WNG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. N. Green.

Additional information

Proceedings of the XIII International Symposium on Cholinergic Mechanisms

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, J.K., Govind, A.P., Drisdel, R.C. et al. Palmitoylation of Nicotinic Acetylcholine Receptors. J Mol Neurosci 40, 12–20 (2010). https://doi.org/10.1007/s12031-009-9246-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-009-9246-z

Keywords

Navigation