Skip to main content
Log in

Protection from Oxidative and Electrophilic Stress in the Gsta4-null Mouse Heart

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

4-Hydroxynonenal (4-HNE) mediates many pathological effects of oxidative and electrophilic stress and signals to activate cytoprotective gene expression regulated by NF-E2-related factor 2 (Nrf2). By exhibiting very high levels of 4-HNE-conjugating activity, the murine glutathione transferase alpha 4 (GSTA4-4) helps regulate cellular 4-HNE levels. To examine the role of 4-HNE in vivo, we disrupted the murine Gsta4 gene. Gsta4-null mice exhibited no cardiac phenotype under normal conditions and no difference in cardiac 4-HNE level as compared to wild-type mice. We hypothesized that the Nrf2 pathway might contribute an important compensatory mechanism to remove excess cardiac 4-HNE in Gsta4-null mice. Cardiac nuclear extracts from Gsta4-null mice exhibited significantly higher Nrf2 binding to antioxidant response elements. We also observed responses in critical Nrf2 target gene products: elevated Sod2, Cat, and Akr1b7 mRNA levels and significant increases in both cardiac antioxidant and anti-electrophile enzyme activities. Gsta4-null mice were less sensitive and maintained normal cardiac function following chronic doxorubicin treatment, known to increase cardiac 4-HNE levels. Hence, in the absence of GSTA4-4 to modulate both physiological and pathological 4-HNE levels, the adaptive Nrf2 pathway may be primed to contribute to a preconditioned cardiac phenotype in the Gsta4-null mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Heistad, D. D., Wakisaka, Y., Miller, J., Chu, Y., & Pena-Silva, R. (2009). Novel aspects of oxidative stress in cardiovascular diseases. Circulation Journal: Official Journal of the Japanese Circulation Society, 73, 201–207.

    Article  CAS  Google Scholar 

  2. Ari, E., Kaya, Y., Demir, H., Cebi, A., Alp, H. H., Bakan, E., et al. (2011). Oxidative DNA damage correlates with carotid artery atherosclerosis in hemodialysis patients. Hemodialysis International, 15, 453–459.

    Article  PubMed  Google Scholar 

  3. Fadel, P. J., Farias Iii, M., Gallagher, K. M., Wang, Z., & Thomas, G. D. (2012). Oxidative stress and enhanced sympathetic vasoconstriction in contracting muscles of nitrate-tolerant rats and humans. Journal of Physiology (Lond), 590, 395–407.

    CAS  Google Scholar 

  4. Hollander, J. M., Baseler, W. A., & Dabkowski, E. R. (2011). Proteomic remodeling of mitochondria in heart failure. Congestive Heart Failure, 17, 262–268.

    Article  PubMed  CAS  Google Scholar 

  5. Schlage, W. K., Westra, J. W., Gebel, S., Catlett, N. L., Mathis, C., Frushour, B. P., et al. (2011). A computable cellular stress network model for non-diseased pulmonary and cardiovascular tissue. BMC Systems Biology, 5, 168.

    Article  PubMed  Google Scholar 

  6. Lee, S., Park, Y., Zuidema, M. Y., Hannink, M., & Zhang, C. (2011). Effects of interventions on oxidative stress and inflammation of cardiovascular diseases. World Journal of Cardiology, 3, 18–24.

    Article  PubMed  Google Scholar 

  7. Chen, Le, & Knowlton, A. A. (2011). Mitochondrial dynamics in heart failure. Congestive Heart Failure, 17, 257–261.

    Article  PubMed  Google Scholar 

  8. Dai, D. F., Rabinovitch, P. S., & Ungvari, Z. (2012). Mitochondria and cardiovascular aging. Circulation Research, 110, 1109–1124.

    Article  PubMed  CAS  Google Scholar 

  9. Zimniak, P. (2011). Relationship of electrophilic stress to aging. Free Radical Biology and Medicine, 51, 1087–1105.

    Article  PubMed  CAS  Google Scholar 

  10. Churchill, E. N., Disatnik, M. H., & Mochly-Rosen, D. (2009). Time-dependent and ethanol-induced cardiac protection from ischemia mediated by mitochondrial translocation of varepsilonPKC and activation of aldehyde dehydrogenase 2. Journal of Molecular and Cellular Cardiology, 46, 278–284.

    Article  PubMed  CAS  Google Scholar 

  11. Dhiman, M., Zago, M. P., Nunez, S., Amoroso, A., Rementeria, H., Dousset, P., et al. (2012). Cardiac-oxidized antigens are targets of immune recognition by antibodies and potential molecular determinants in chagas disease pathogenesis. PLoS ONE, 7, e28449.

    Article  PubMed  CAS  Google Scholar 

  12. Hayashida, K., Sano, M., Kamimura, N., Yokota, T., Suzuki, M., Maekawa, Y., et al. (2012). H(2) gas improves functional outcome after cardiac arrest to an extent comparable to therapeutic hypothermia in a rat model. Journal of the American Heart Association, 1, e003459.

    Article  PubMed  Google Scholar 

  13. Awasthi, Y. C., Sharma, R., Sharma, A., Yadav, S., Singhal, S. S., Chaudhary, P., et al. (2008). Self-regulatory role of 4-hydroxynonenal in signaling for stress-induced programmed cell death. Free Radical Biology and Medicine, 45, 111–118.

    Article  PubMed  CAS  Google Scholar 

  14. Uchida, K., Shiraishi, M., Naito, Y., Torii, Y., Nakamura, Y., & Osawa, T. (1999). Activation of stress signaling pathways by the end product of lipid peroxidation—4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. Journal of Biological Chemistry, 274, 2234–2242.

    Article  PubMed  CAS  Google Scholar 

  15. Ma, H., Guo, R., Yu, L., Zhang, Y., & Ren, J. (2011). Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: Role of autophagy paradox and toxic aldehyde. European Heart Journal, 32, 1025–1038.

    Article  PubMed  CAS  Google Scholar 

  16. Pajaud, J., Kumar, S., Rauch, C., Morel, F., & Aninat, C. (2012). Regulation of signal transduction by glutathione transferases. International Journal of Hepatology, 2012, 137676.

    Article  PubMed  Google Scholar 

  17. Kansanen, E., Jyrkkanen, H. K., & Levonen, A. L. (2012). Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radical Biology and Medicine, 52, 973–982.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang, D. D., Lo, S. C., Cross, J. V., Templeton, D. J., & Hannink, M. (2004). Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Molecular and Cellular Biology, 24, 10941–10953.

    Article  PubMed  CAS  Google Scholar 

  19. Taylor, R. C., Acquaah-Mensah, G., Singhal, M., Malhotra, D., & Biswal, S. (2008). Network inference algorithms elucidate Nrf2 regulation of mouse lung oxidative stress. PLoS Computational Biology, 4, e1000166.

    Article  PubMed  Google Scholar 

  20. Zhu, H., Jia, Z., Misra, B. R., Zhang, L., Cao, Z., Yamamoto, M., et al. (2008). Nuclear factor E2-related factor 2-dependent myocardiac cytoprotection against oxidative and electrophilic stress. Cardiovascular Toxicology, 8, 71–85.

    Article  PubMed  CAS  Google Scholar 

  21. Aleksunes, L. M., & Klaassen, C. D. (2012). Coordinated regulation of hepatic phase I and II drug-metabolizing genes and transporters using AhR-, CAR-, PXR-, PPARalpha-, and Nrf2-null mice. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 40, 1366–1379.

    Article  CAS  Google Scholar 

  22. Balogh, L. M., & Atkins, W. M. (2011). Interactions of glutathione transferases with 4-hydroxynonenal. Drug Metabolism Reviews, 43, 165–178.

    Article  PubMed  CAS  Google Scholar 

  23. Engle, M. R., Singh, S. P., Czernik, P. J., Gaddy, D., Montague, D. C., Ceci, J. D., et al. (2004). Physiological role of mGSTA4-4, a glutathione S-transferase metabolizing 4-hydroxynonenal: Generation and analysis of mGsta4 null mouse. Toxicology and Applied Pharmacology, 194, 296–308.

    Article  PubMed  CAS  Google Scholar 

  24. Raza, H., Robin, M. A., Fang, J. K., & Avadhani, N. G. (2002). Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress. Biochemical Journal, 366, 45–55.

    PubMed  CAS  Google Scholar 

  25. Desmots, F., Rissel, M., Loyer, P., Turlin, B., & Guillouzo, A. (2001). Immunohistological analysis of glutathione transferase A4 distribution in several human tissues using a specific polyclonal antibody. Journal of Histochemistry and Cytochemistry, 49, 1573–1580.

    Article  PubMed  CAS  Google Scholar 

  26. Chaiswing, L., Cole, M. P., St Clair, D. K., Ittarat, W., Szweda, L. I., & Oberley, T. D. (2004). Oxidative damage precedes nitrative damage in adriamycin-induced cardiac mitochondrial injury. Toxicologic Pathology, 32, 536–547.

    Article  PubMed  CAS  Google Scholar 

  27. Menna, P., Salvatorelli, E., & Minotti, G. (2007). Doxorubicin degradation in cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics, 322, 408–419.

    Article  PubMed  CAS  Google Scholar 

  28. Jungsuwadee, P., Nithipongvanitch, R., Chen, Y., Oberley, T. D., Butterfield, D. A., St Clair, D. K., et al. (2009). Mrp1 localization and function in cardiac mitochondria after doxorubicin. Molecular Pharmacology, 75, 1117–1126.

    Article  PubMed  CAS  Google Scholar 

  29. Zhao, Y., McLaughlin, D., Robinson, E., Harvey, A. P., Hookham, M. B., Shah, A. M., et al. (2010). Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with Doxorubicin chemotherapy. Cancer Research, 70, 9287–9297.

    Article  PubMed  CAS  Google Scholar 

  30. Richard, C., Ghibu, S., Delemasure-Chalumeau, S., Guilland, J. C., Des Rosiers, C., Zeller, M., et al. (2011). Oxidative stress and myocardial gene alterations associated with Doxorubicin-induced cardiotoxicity in rats persist for 2 months after treatment cessation. Journal of Pharmacology and Experimental Therapeutics, 339, 807–814.

    Article  PubMed  CAS  Google Scholar 

  31. Xi, L., Zhu, S. G., Das, A., Chen, Q., Durrant, D., Hobbs, D. C., et al. (2012). Dietary inorganic nitrate alleviates doxorubicin cardiotoxicity: Mechanisms and implications. Nitric Oxide, 26, 274–284.

    Article  PubMed  CAS  Google Scholar 

  32. Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52, 1213–1225.

    Article  PubMed  CAS  Google Scholar 

  33. Grée, R., Tourbah, H., & Carrié, R. (1986). Furaldehyde monodimethyl acetal: An easily accessible and versatile intermediate. Tetrahedron Letters, 27, 4983–4986.

    Article  Google Scholar 

  34. Chandra, A., & Srivastava, S. K. (1997). A synthesis of 4-hydroxy-2-trans-nonenal and 4-(3H) 4-hydroxy-2-trans-nonenal. Lipids, 32, 779–782.

    Article  PubMed  CAS  Google Scholar 

  35. Wollenberger, A., Ristau, O., & Schoffa, G. (1960). A simple technic for extremely rapid freezing of large pieces of tissue. Pflügers Archiv für die Gesamte Physiologie des Menschen und der Tiere, 270, 399–412.

    Article  PubMed  CAS  Google Scholar 

  36. Singh, S. P., Niemczyk, M., Saini, D., Awasthi, Y. C., Zimniak, L., & Zimniak, P. (2008). Role of the electrophilic lipid peroxidation product 4-hydroxynonenal in the development and maintenance of obesity in mice. Biochemistry (Mosc), 47, 3900–3911.

    Article  CAS  Google Scholar 

  37. Singh, S. P., Niemczyk, M., Saini, D., Sadovov, V., Zimniak, L., & Zimniak, P. (2010). Disruption of the mGsta4 gene increases life span of C57BL mice. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 65, 14–23.

    Article  Google Scholar 

  38. Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  39. Mohanty, J. G., Jaffe, J. S., Schulman, E. S., & Raible, D. G. (1997). A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. Journal of Immunological Methods, 202, 133–141.

    Article  PubMed  CAS  Google Scholar 

  40. Manthey, C. L., & Sladek, N. E. (1988). Kinetic characterization of the catalysis of “activated” cyclophosphamide (4-hydroxycyclophosphamide/aldophosphamide) oxidation to carboxyphosphamide by mouse hepatic aldehyde dehydrogenases. Biochemical Pharmacology, 37, 2781–2790.

    Article  PubMed  CAS  Google Scholar 

  41. Bunting, K. D., Lindahl, R., & Townsend, A. J. (1994). Oxazaphosphorine-specific resistance in human MCF-7 breast carcinoma cell lines expressing transfected rat class 3 aldehyde dehydrogenase. Journal of Biological Chemistry, 269, 23197–23203.

    PubMed  CAS  Google Scholar 

  42. Burczynski, M. E., Sridhar, G. R., Palackal, N. T., & Penning, T. M. (2001). The reactive oxygen species–and Michael acceptor-inducible human aldo-keto reductase AKR1C1 reduces the alpha, beta-unsaturated aldehyde 4-hydroxy-2-nonenal to 1,4-dihydroxy-2-nonene. Journal of Biological Chemistry, 276, 2890–2897.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang, Y., Sano, M., Shinmura, K., Tamaki, K., Katsumata, Y., Matsuhashi, T., et al. (2010). 4-Hydroxy-2-nonenal protects against cardiac ischemia-reperfusion injury via the Nrf2-dependent pathway. Journal of Molecular and Cellular Cardiology, 49, 576–586.

    Article  PubMed  CAS  Google Scholar 

  44. Srivastava, S., Chandra, A., Wang, L. F., Seifert, W. E, Jr, DaGue, B. B., Ansari, N. H., et al. (1998). Metabolism of the lipid peroxidation product, 4-hydroxy-trans-2-nonenal, in isolated perfused rat heart. Journal of Biological Chemistry, 273, 10893–10900.

    Article  PubMed  CAS  Google Scholar 

  45. Sterba, M., Popelova, O., Vavrova, A., Jirkovsky, E., Kovarikova, P., Gersl, V., et al. (2013). Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection. Antioxidants & Redox Signaling, 18, 899–929.

    Article  CAS  Google Scholar 

  46. Luo, X., Evrovsky, Y., Cole, D., Trines, J., Benson, L. N., & Lehotay, D. C. (1997). Doxorubicin-induced acute changes in cytotoxic aldehydes, antioxidant status and cardiac function in the rat. Biochimica et Biophysica Acta, 1360, 45–52.

    Article  PubMed  CAS  Google Scholar 

  47. Zimniak, P., Singhal, S. S., Srivastava, S. K., Awasthi, S., Sharma, R., Hayden, J. B., et al. (1994). Estimation of genomic complexity, heterologous expression, and enzymatic characterization of mouse glutathione S-transferase mGSTA4-4 (GST 5.7). Journal of Biological Chemistry, 269, 992–1000.

    PubMed  CAS  Google Scholar 

  48. Knight, T. R., Choudhuri, S., & Klaassen, C. D. (2007). Constitutive mRNA expression of various glutathione S-transferase isoforms in different tissues of mice. Toxicological Sciences, 100, 513–524.

    Article  PubMed  CAS  Google Scholar 

  49. Prosser, B. L., Ward, C. W., & Lederer, W. J. (2011). X-ROS signaling: Rapid mechano-chemo transduction in heart. Science, 333, 1440–1445.

    Article  PubMed  CAS  Google Scholar 

  50. Thimmulappa, R. K., Mai, K. H., Srisuma, S., Kensler, T. W., Yamamoto, M., & Biswal, S. (2002). Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Research, 62, 5196–5203.

    PubMed  CAS  Google Scholar 

  51. Lou, H., Du, S., Ji, Q., & Stolz, A. (2006). Induction of AKR1C2 by phase II inducers: Identification of a distal consensus antioxidant response element regulated by NRF2. Molecular Pharmacology, 69, 1662–1672.

    Article  PubMed  CAS  Google Scholar 

  52. Goldring, C. E., Kitteringham, N. R., Elsby, R., Randle, L. E., Clement, Y. N., Williams, D. P., et al. (2004). Activation of hepatic Nrf2 in vivo by acetaminophen in CD-1 mice. Hepatology, 39, 1267–1276.

    Article  PubMed  CAS  Google Scholar 

  53. Li, Y., Paonessa, J. D., & Zhang, Y. (2012). Mechanism of chemical activation of Nrf2. PLoS ONE, 7, e35122.

    Article  PubMed  CAS  Google Scholar 

  54. Doroshow, J. H., Locker, G. Y., Ifrim, I., & Myers, C. E. (1981). Prevention of doxorubicin cardiac toxicity in the mouse by N-acetylcysteine. Journal of Clinical Investigation, 68, 1053–1064.

    Article  PubMed  CAS  Google Scholar 

  55. Lu, M., Merali, S., Gordon, R., Jiang, J., Li, Y., Mandeli, J., et al. (2011). Prevention of Doxorubicin cardiopathic changes by a benzyl styryl sulfone in mice. Genes Cancer, 2, 985–992.

    Article  PubMed  CAS  Google Scholar 

  56. Todorova, V. K., Beggs, M. L., Delongchamp, R. R., Dhakal, I., Makhoul, I., Wei, J. Y., et al. (2012). Transcriptome profiling of peripheral blood cells identifies potential biomarkers for Doxorubicin cardiotoxicity in a rat model. PLoS ONE, 7, e48398.

    Article  PubMed  CAS  Google Scholar 

  57. Yen, H. C., Oberley, T. D., Gairola, C. G., Szweda, L. I., & St Clair, D. K. (1999). Manganese superoxide dismutase protects mitochondrial complex I against adriamycin-induced cardiomyopathy in transgenic mice. Archives of Biochemistry and Biophysics, 362, 59–66.

    Article  PubMed  CAS  Google Scholar 

  58. Cole, M. P., Chaiswing, L., Oberley, T. D., Edelmann, S. E., Piascik, M. T., Lin, S. M., et al. (2006). The protective roles of nitric oxide and superoxide dismutase in adriamycin-induced cardiotoxicity. Cardiovascular Research, 69, 186–197.

    Article  PubMed  CAS  Google Scholar 

  59. Kang, Y. J., Sun, X., Chen, Y., & Zhou, Z. (2002). Inhibition of doxorubicin chronic toxicity in catalase-overexpressing transgenic mouse hearts. Chemical Research in Toxicology, 15, 1–6.

    Article  PubMed  Google Scholar 

  60. Bell, R. M., & Yellon, D. M. (2012). Conditioning the whole heart–not just the cardiomyocyte. Journal of Molecular and Cellular Cardiology, 53, 24–32.

    Article  PubMed  CAS  Google Scholar 

  61. Ito, H., Shimojo, T., Fujisaki, H., Tamamori, M., Ishiyama, S., Adachi, S., et al. (1999). Thermal preconditioning protects rat cardiac muscle cells from doxorubicin-induced apoptosis. Life Sciences, 64, 755–761.

    Article  PubMed  CAS  Google Scholar 

  62. Liu, X., Chen, Z., Chua, C. C., Ma, Y. S., Youngberg, G. A., Hamdy, R., et al. (2002). Melatonin as an effective protector against doxorubicin-induced cardiotoxicity. American Journal of Physiology: Heart and Circulatory Physiology, 283, H254–H263.

    PubMed  CAS  Google Scholar 

  63. Hofmann, P. A., Israel, M., Koseki, Y., Laskin, J., Gray, J., Janik, A., et al. (2007). N-Benzyladriamycin-14-valerate (AD 198): A non-cardiotoxic anthracycline that is cardioprotective through PKC-epsilon activation. Journal of Pharmacology and Experimental Therapeutics, 323, 658–664.

    Article  PubMed  CAS  Google Scholar 

  64. Kim, K. H., Oudit, G. Y., & Backx, P. H. (2008). Erythropoietin protects against doxorubicin-induced cardiomyopathy via a phosphatidylinositol 3-kinase-dependent pathway. Journal of Pharmacology and Experimental Therapeutics, 324, 160–169.

    Article  PubMed  CAS  Google Scholar 

  65. Calvert, J. W., Coetzee, W. A., & Lefer, D. J. (2010). Novel insights into hydrogen sulfide–mediated cytoprotection. Antioxidants & Redox Signaling, 12, 1203–1217.

    Article  CAS  Google Scholar 

  66. Hydock, D. S., Lien, C. Y., Jensen, B. T., Schneider, C. M., & Hayward, R. (2011). Exercise preconditioning provides long-term protection against early chronic doxorubicin cardiotoxicity. Integrative Cancer Therapies, 10, 47–57.

    Article  PubMed  Google Scholar 

  67. Muthusamy, V. R., Kannan, S., Sadhaasivam, K., Gounder, S. S., Davidson, C. J., Boeheme, C., et al. (2012). Acute exercise stress activates Nrf2/ARE signaling and promotes antioxidant mechanisms in the myocardium. Free Radical Biology and Medicine, 52, 366–376.

    Article  PubMed  CAS  Google Scholar 

  68. Zhu, H., Zhang, L., Xi, X., Zweier, J. L., & Li, Y. (2006). 4-Hydroxy-2-nonenal upregulates endogenous antioxidants and phase 2 enzymes in rat H9c2 myocardiac cells: Protection against overt oxidative and electrophilic injury. Free Radical Research, 40, 875–884.

    Article  PubMed  CAS  Google Scholar 

  69. Giudice, A., Arra, C., & Turco, M. C. (2010). Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents. Methods in Molecular Biology, 647, 37–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the National Institutes of Health, USA (R01 AG032643 to S.P.S.) and a Pilot Study Grant (to H.B.) from the College of Medicine Research Council at the University of Arkansas for Medical Sciences. We thank Ludwika Zimniak (University of Arkansas for Medical Sciences) for her reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharda P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beneš, H., Vuong, M.K., Boerma, M. et al. Protection from Oxidative and Electrophilic Stress in the Gsta4-null Mouse Heart. Cardiovasc Toxicol 13, 347–356 (2013). https://doi.org/10.1007/s12012-013-9215-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-013-9215-1

Keywords

Navigation