Skip to main content

Advertisement

Log in

Expression of Glucocorticoid-Induced Leucine Zipper (GILZ) in Cardiomyocytes

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Glucocorticoids (GCs) are frequently prescribed pharmacological agents most notably for their immunosuppressive effects. Endogenous GCs mediate biological processes such as energy metabolism and tissue development. At the cellular level, GCs bind to the glucocorticoid receptor (GR), a cytosolic protein that translocates to the nuclei and functions to alter transcription upon ligand binding. Among a long list of genes activated by GCs is the glucocorticoid-induced leucine zipper (GILZ). GC-induced GILZ expression has been well established in lymphocytes and mediates GC-induced apoptosis. Unlike lymphocytes, cardiomyocytes respond to GCs by gaining resistance against apoptosis. We determined GILZ expression in cardiomyocytes in vivo and in vitro. Expression of GILZ in mouse hearts as a result of GC administration was confirmed by Western blot analyses. GCs induced dose- and time-dependent elevation of GILZ expression in primary cultured rat cardiomyocytes, with dexamethasone (Dex) as low as 0.1 μM being effective. Time course analysis indicated that GILZ protein levels increased at 8 h and peaked at 48 h after exposure to 1 μM Dex. H9c2(2-1) cell line showed a similar response of GILZ induction by Dex as primary cultured rat cardiomyocytes, providing a convenient model for studying the biological significance of GILZ expression. With corticosterone (CT), an endogenous form of corticosteroids in rodents, 0.1–2.5 μM was found to induce GILZ in H9c2(2-1) cells. Time course analysis with 1 μM CT indicated induction of GILZ at 6 h with peak expression at 18 h. Inhibition of the GR by mifepristone led to blunting of GILZ induction by GCs. Our data demonstrate GILZ induction in cardiomyocytes both in vivo and in vitro by GCs, pointing to H9c2(2-1) cells as a valid model for studying the biological function of GILZ in cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D’Adamio, F., Zollo, O., Moraca, R., Ayroldi, E., Bruscoli, S., Bartoli, A., et al. (1997). A new dexamethasone-induced gene of the leucine zipper family protects T lymphocytes from TCR/CD3-activated cell death. Immunity, 7, 803–812.

    Article  PubMed  Google Scholar 

  2. Ayroldi, E., Migliorati, G., Bruscoli, S., Marchetti, C., Zollo, O., Cannarile, L., et al. (2001). Modulation of T-cell activation by the glucocorticoid-induced leucine zipper factor via inhibition of nuclear factor kappaB. Blood, 98, 743–753.

    Article  CAS  PubMed  Google Scholar 

  3. Ayroldi, E., Zollo, O., Bastianelli, A., Marchetti, C., Agostini, M., Di Virgilio, R., et al. (2007). GILZ mediates the antiproliferative activity of glucocorticoids by negative regulation of Ras signaling. Journal of Clinical Investment, 117, 1605–1615.

    Article  CAS  Google Scholar 

  4. Muller, O. G., Parnova, R. G., Centeno, G., Rossier, B. C., Firsov, D., & Horisberger, J. D. (2003). Mineralocorticoid effects in the kidney: Correlation between alphaENaC, GILZ, and Sgk-1 mRNA expression and urinary excretion of Na+ and K+. Journal of the American Society of Nephrology, 14, 1107–1115.

    Article  CAS  PubMed  Google Scholar 

  5. Soundararajan, R., Zhang, T. T., Wang, J., Vandewalle, A., & Pearce, D. (2005). A novel role for glucocorticoid-induced leucine zipper protein in epithelial sodium channel-mediated sodium transport. Journal of Biological Chemistry, 280, 39970–39981.

    Article  CAS  PubMed  Google Scholar 

  6. Di Marco, B., Massetti, M., Bruscoli, S., Macchiarulo, A., Di Virgilio, R., Velardi, E., et al. (2007). Glucocorticoid-induced leucine zipper (GILZ)/NF-kappaB interaction: Role of GILZ homo-dimerization and C-terminal domain. Nucleic Acids Research, 35, 517–528.

    Article  PubMed  Google Scholar 

  7. Mittelstadt, P. R., & Ashwell, J. D. (2001). Inhibition of AP-1 by the glucocorticoid-inducible protein GILZ. Journal of Biological Chemistry, 276, 29603–29610.

    Article  CAS  PubMed  Google Scholar 

  8. Ayroldi, E., Zollo, O., Macchiarulo, A., Di Marco, B., Marchetti, C., & Riccardi, C. (2002). Glucocorticoid-induced leucine zipper inhibits the Raf-extracellular signal-regulated kinase pathway by binding to Raf-1. Molecular and Cellular Biology, 22, 7929–7941.

    Article  CAS  PubMed  Google Scholar 

  9. Ayroldi, E., & Riccardi, C. (2009). Glucocorticoid-induced leucine zipper (GILZ): A new important mediator of glucocorticoid action. FASEB Journal, 23, 3649–3658.

    Article  CAS  PubMed  Google Scholar 

  10. Cannarile, L., Zollo, O., D’Adamio, F., Ayroldi, E., Marchetti, C., Tabilio, A., et al. (2001). Cloning, chromosomal assignment and tissue distribution of human GILZ, a glucocorticoid hormone-induced gene. Cell Death and Differentiation, 8, 201–203.

    Article  CAS  PubMed  Google Scholar 

  11. Asselin-Labat, M. L., David, M., Biola-Vidamment, A., Lecoeuche, D., Zennaro, M. C., Bertoglio, J., et al. (2004). GILZ, a new target for the transcription factor FoxO3, protects T lymphocytes from interleukin-2 withdrawal-induced apoptosis. Blood, 104, 215–223.

    Article  CAS  PubMed  Google Scholar 

  12. Tynan, S. H., Lundeen, S. G., & Allan, G. F. (2004). Cell type-specific bidirectional regulation of the glucocorticoid-induced leucine zipper (GILZ) gene by estrogen. Journal of Steroid Biochemistry and Molecular Biology, 91, 225–239.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, Q. M., Alexander, D., Sun, H., Xie, L., Lin, Y., Terrand, J., et al. (2005). Corticosteroids inhibit cell death induced by doxorubicin in cardiomyocytes: Induction of antiapoptosis, antioxidant, and detoxification genes. Molecular Pharmacology, 67, 1861–1873.

    Article  CAS  PubMed  Google Scholar 

  14. Gerrelli, D., Huntriss, J. D., & Latchman, D. S. (1994). Antagonistic effects of retinoic acid and thyroid hormone on the expression of the tissue-specific splicing protein SmN in a clonal cell line derived from rat heart. Journal of Molecular and Cellular Cardiology, 26, 713–719.

    Article  CAS  PubMed  Google Scholar 

  15. Khaw, B. A., Torchilin, V. P., Vural, I., & Narula, J. (1995). Plug and seal: Prevention of hypoxic cardiocyte death by sealing membrane lesions with antimyosin-liposomes. Nature Medicine, 1, 1195–1198.

    Article  CAS  PubMed  Google Scholar 

  16. Mestril, R., Chi, S. H., Sayen, M. R., O’Reilly, K., & Dillmann, W. H. (1994). Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against simulated ischemia-induced injury. Journal of Clinical Investment, 93, 759–767.

    Article  CAS  Google Scholar 

  17. Coronella-Wood, J., Terrand, J., Sun, H., & Chen, Q. M. (2004). c-Fos phosphorylation induced by H2O2 prevents proteasomal degradation of c-Fos in cardiomyocytes. Journal of Biological Chemistry, 279, 33567–33574.

    Article  CAS  PubMed  Google Scholar 

  18. Xu, B., Strom, J., & Chen, Q. M. (2011). Dexamethasone induces transcriptional activation of Bcl-xL gene and inhibits cardiac injury by myocardial ischemia. European Journal of Pharmacology, 668, 194–200.

    Article  CAS  PubMed  Google Scholar 

  19. Schmidt, P., Holsboer, F., & Spengler, D. (2001). Beta(2)-adrenergic receptors potentiate glucocorticoid receptor transactivation via G protein beta gamma-subunits and the phosphoinositide 3-kinase pathway. Molecular Endocrinology, 15, 553–564.

    Article  CAS  PubMed  Google Scholar 

  20. Hafezi-Moghadam, A., Simoncini, T., Yang, Z., Limbourg, F. P., Plumier, J. C., Rebsamen, M. C., et al. (2002). Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nature Medicine, 8, 473–479.

    Article  CAS  PubMed  Google Scholar 

  21. Harms, C., Albrecht, K., Harms, U., Seidel, K., Hauck, L., Baldinger, T., et al. (2007). Phosphatidylinositol 3-Akt-kinase-dependent phosphorylation of p21(Waf1/Cip1) as a novel mechanism of neuroprotection by glucocorticoids. Journal of Neuroscience, 27, 4562–4571.

    Article  CAS  PubMed  Google Scholar 

  22. Hulley, P. A., Gordon, F., & Hough, F. S. (1998). Inhibition of mitogen-activated protein kinase activity and proliferation of an early osteoblast cell line (MBA 15.4) by dexamethasone: role of protein phosphatases. Endocrinology, 139, 2423–2431.

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez, M. V., Gonzalez-Sancho, J. M., Caelles, C., Munoz, A., & Jimenez, B. (1999). Hormone-activated nuclear receptors inhibit the stimulation of the JNK and ERK signalling pathways in endothelial cells. FEBS Letters, 459, 272–276.

    Article  CAS  PubMed  Google Scholar 

  24. Kassel, O., Sancono, A., Kratzschmar, J., Kreft, B., Stassen, M., & Cato, A. C. (2001). Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO Journal, 20, 7108–7116.

    Article  CAS  PubMed  Google Scholar 

  25. Lasa, M., Abraham, S. M., Boucheron, C., Saklatvala, J., & Clark, A. R. (2002). Dexamethasone causes sustained expression of mitogen-activated protein kinase (MAPK) phosphatase 1 and phosphatase-mediated inhibition of MAPK p38. Molecular and Cellular Biology, 22, 7802–7811.

    Article  CAS  PubMed  Google Scholar 

  26. Shuto, T., Imasato, A., Jono, H., Sakai, A., Xu, H., Watanabe, T., et al. (2002). Glucocorticoids synergistically enhance nontypeable Haemophilus influenzae-induced Toll-like receptor 2 expression via a negative cross-talk with p38 MAP kinase. Journal of Biological Chemistry, 277, 17263–17270.

    Article  CAS  PubMed  Google Scholar 

  27. Kimes, B. W., & Brandt, B. L. (1976). Properties of a clonal muscle cell line from rat heart. Experimental Cell Research, 98, 367–381.

    Article  CAS  PubMed  Google Scholar 

  28. Hescheler, J., Meyer, R., Plant, S., Krautwurst, D., Rosenthal, W., & Schultz, G. (1991). Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circulation Research, 69, 1476–1486.

    Article  CAS  PubMed  Google Scholar 

  29. Sipido, K. R., & Marban, E. (1991). L-type calcium channels, potassium channels, and novel nonspecific cation channels in a clonal muscle cell line derived from embryonic rat ventricle. Circulation Research, 69, 1487–1499.

    Article  CAS  PubMed  Google Scholar 

  30. Watkins, S. J., Borthwick, G. M., & Arthur, H. M. (2011). The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Develop Biology. Animal, 47, 125–131.

    CAS  Google Scholar 

  31. Chen, Q. M., Tu, V. C., Wu, Y., & Bahl, J. J. (2000). Hydrogen peroxide dose dependent induction of cell death or hypertrophy in cardiomyocytes. Archives of Biochemistry and Biophysics, 373, 242–248.

    Article  CAS  PubMed  Google Scholar 

  32. Menconi, M., Gonnella, P., Petkova, V., Lecker, S., & Hasselgren, P. O. (2008). Dexamethasone and corticosterone induce similar, but not identical, muscle wasting responses in cultured L6 and C2C12 myotubes. Journal of Cellular Biochemistry, 105, 353–364.

    Article  CAS  PubMed  Google Scholar 

  33. Solito, E., Mulla, A., Morris, J. F., Christian, H. C., Flower, R. J., & Buckingham, J. C. (2003). Dexamethasone induces rapid serine-phosphorylation and membrane translocation of annexin 1 in a human folliculostellate cell line via a novel nongenomic mechanism involving the glucocorticoid receptor, protein kinase C, phosphatidylinositol 3-kinase, and mitogen-activated protein kinase. Endocrinology, 144, 1164–1174.

    Article  CAS  PubMed  Google Scholar 

  34. Limbourg, F. P., & Liao, J. K. (2003). Nontranscriptional actions of the glucocorticoid receptor. Journal of Molecular Medicine (Berlin), 81, 168–174.

    CAS  Google Scholar 

  35. Poizat, C., Puri, P. L., Bai, Y., & Kedes, L. (2005). Phosphorylation-dependent degradation of p300 by doxorubicin-activated p38 mitogen-activated protein kinase in cardiac cells. Molecular and Cellular Biology, 25, 2673–2687.

    Article  CAS  PubMed  Google Scholar 

  36. Asai, M., Tsukamoto, O., Minamino, T., Asanuma, H., Fujita, M., Asano, Y., et al. (2009). PKA rapidly enhances proteasome assembly and activity in in vivo canine hearts. Journal of Molecular and Cellular Cardiology, 46, 452–462.

    Article  CAS  PubMed  Google Scholar 

  37. Drews, O., Tsukamoto, O., Liem, D., Streicher, J., Wang, Y., & Ping, P. (2010). Differential regulation of proteasome function in isoproterenol-induced cardiac hypertrophy. Circulation Research, 107, 1094–1101.

    Article  CAS  PubMed  Google Scholar 

  38. Lin, A. L., McGill, H. C., Jr, & Shain, S. A. (1982). Hormone receptors of the baboon cardiovascular system. Biochemical characterization of aortic and myocardial cytoplasmic progesterone receptors. Circulation Research, 50, 610–616.

    Article  CAS  PubMed  Google Scholar 

  39. Goldstein, J., Sites, C. K., & Toth, M. J. (2004). Progesterone stimulates cardiac muscle protein synthesis via receptor-dependent pathway. Fertility and Sterility, 82, 430–436.

    Article  CAS  PubMed  Google Scholar 

  40. Grohe, C., Kahlert, S., Lobbert, K., Stimpel, M., Karas, R. H., Vetter, H., et al. (1997). Cardiac myocytes and fibroblasts contain functional estrogen receptors. FEBS Letters, 416, 107–112.

    Article  CAS  PubMed  Google Scholar 

  41. Ingegno, M. D., Money, S. R., Thelmo, W., Greene, G. L., Davidian, M., Jaffe, B. M., et al. (1988). Progesterone receptors in the human heart and great vessels. Laboratory Investigation, 59, 353–356.

    CAS  PubMed  Google Scholar 

  42. Knowlton, A. A., & Sun, L. (2001). Heat-shock factor-1, steroid hormones, and regulation of heat-shock protein expression in the heart. American Journal of Physiolology Heart Circulation Physiology, 280, H455–H464.

    CAS  Google Scholar 

  43. Evans, R. M. (1988). The steroid and thyroid hormone receptor superfamily. Science, 240, 889–895.

    Article  CAS  PubMed  Google Scholar 

  44. Cato, A. C., Miksicek, R., Schutz, G., Arnemann, J., & Beato, M. (1986). The hormone regulatory element of mouse mammary tumour virus mediates progesterone induction. EMBO Journal, 5, 2237–2240.

    CAS  PubMed  Google Scholar 

  45. Strahle, U., Klock, G., & Schutz, G. (1987). A DNA sequence of 15 base pairs is sufficient to mediate both glucocorticoid and progesterone induction of gene expression. Proceedings of the Natural Academy Sciences of USA, 84, 7871–7875.

    Article  CAS  Google Scholar 

  46. Hecht, A., Berkenstam, A., Stromstedt, P. E., Gustafsson, J. A., & Sippel, A. E. (1988). A progesterone responsive element maps to the far upstream steroid dependent DNase hypersensitive site of chicken lysozyme chromatin. EMBO Journal, 7, 2063–2073.

    CAS  PubMed  Google Scholar 

  47. Ham, J., Thomson, A., Needham, M., Webb, P., & Parker, M. (1988). Characterization of response elements for androgens, glucocorticoids and progestins in mouse mammary tumour virus. Nucleic Acids Research, 16, 5263–5276.

    Article  CAS  PubMed  Google Scholar 

  48. Gronemeyer, H. (1991). Transcription activation by estrogen and progesterone receptors. Annual Review Genetics, 25, 89–123.

    Article  CAS  Google Scholar 

  49. Morrissy, S., Xu, B., Aguilar, D., Zhang, J., & Chen, Q. M. (2010). Inhibition of apoptosis by progesterone in cardiomyocytes. Aging Cell, 9, 799–809.

    Article  CAS  PubMed  Google Scholar 

  50. De, P., Roy, S. G., Kar, D., & Bandyopadhyay, A. (2011). Excess of glucocorticoid induces myocardial remodeling and alteration of calcium signaling in cardiomyocytes. Journal of Endocrinology, 209, 105–114.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work from our laboratory has been supported by NIH R01 HL 076530, R01 HL089958, R21ES017473, T32 ES007091, Arizona Biomedical Research Commission (QMC). We would like to thank Daniel Lee for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin M. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilar, D.C., Strom, J., Xu, B. et al. Expression of Glucocorticoid-Induced Leucine Zipper (GILZ) in Cardiomyocytes. Cardiovasc Toxicol 13, 91–99 (2013). https://doi.org/10.1007/s12012-012-9188-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-012-9188-5

Keywords

Navigation