Skip to main content
Log in

The Defensive Effect of Benfotiamine in Sodium Arsenite-Induced Experimental Vascular Endothelial Dysfunction

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in sodium arsenite-induced vascular endothelial dysfunction (VED) in rats. Sodium arsenite (1.5 mg−1 kg−1 day−1 i.p., 2 weeks) was administered in rats to produce VED. The development of VED was assessed by employing isolated aortic ring preparation and estimating the serum and aortic concentrations of nitrite/nitrate. Further, the integrity of vascular endothelium in thoracic aorta was assessed by scanning electron microscopy. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of sodium arsenite markedly produced VED by attenuating acetylcholine-induced endothelium-dependent relaxation, decreasing serum and aortic concentrations of nitrite/nitrate, and impairing the integrity of vascular endothelium. Further, sodium arsenite produced oxidative stress by increasing serum TBARS and aortic superoxide generation. The treatment with benfotiamine (25, 50, and 100 mg−1 kg−1 day−1 p.o.) or atorvastatin (30 mg−1 kg−1 day−1 p.o., a standard agent) prevented sodium arsenite-induced VED and oxidative stress. However, the beneficial effects of benfotiamine in preventing the sodium arsenite-induced VED were attenuated by co-administration with N-omega-nitro-l-arginine methyl ester (L-NAME) (25 mg−1 kg−1 day−1, i.p.), an inhibitor of NOS. Thus, it may be concluded that benfotiamine reduces oxidative stress and activates endothelial nitric oxide synthase to enhance the generation and bioavailability of NO and subsequently improves the integrity of vascular endothelium to prevent sodium arsenite-induced experimental VED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Le Brocq M, Leslie JS, Milliken P, Megson IL (2008) Endothelial dysfunction: from molecular mechanism to measurements, clinical implications and therapeutic opportunities. Antioxid Redox Signal 10:1631–1674

    Article  PubMed  Google Scholar 

  2. Esper RJ, Nordaby RA, Vilarino JO, Paragano A, Cacharron JL, Machado RA (2006) Endothelial dysfunction: a comprehensive appraisal. Cardiovasc Diabetol 5:4

    Article  PubMed  Google Scholar 

  3. Balakumar P, Jindal S, Shah DI, Singh M (2007) Experimental models for vascular endothelial dysfunction. Trends Med Res 2:12–20

    Article  CAS  Google Scholar 

  4. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  CAS  PubMed  Google Scholar 

  5. Ignarro LJ (1989) Endothelium-derived nitric oxide, actions and properties. FASEB J 3:31–36

    CAS  PubMed  Google Scholar 

  6. Balakumar P, Kaur T, Singh M (2008) Potential target sites to modulate vascular endothelial dysfunction: current perspectives and future directions. Toxicology 245:49–64

    Article  CAS  PubMed  Google Scholar 

  7. Desjardins F, Balligand JL (2006) Nitric oxide-dependent endothelial function and cardiovascular disease. Acta Clin Belg 61:326–334

    CAS  PubMed  Google Scholar 

  8. Bonetti PO, Lerman LO, Lerman A (2003) Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Bio 23:168–175

    Article  CAS  Google Scholar 

  9. Balakumar P, Koladiya RU, Ramasamy S, Rathinavel A, Singh M (2008) Pharmacological interventions to prevent vascular endothelial dysfunction: future directions. J Health Sci 54:1–16

    Article  CAS  Google Scholar 

  10. Yang Z, Ming XF (2006) Recent advances in understanding endothelial dysfunction in atherosclerosis. Clin Med Res 4:53–56

    Article  PubMed  Google Scholar 

  11. Giansante C, Fiotti N (2006) Insights into human hypertension: the role of endothelial dysfunction. J Human Hypertens 20:725–726

    Article  CAS  Google Scholar 

  12. Heitzer T, Schlinzig T, Krohn K, Meinertz T, Munzel M (2001) Endothelial dysfunction, oxidative stress and risk of cardiovascular events in patients with coronary artery disease. Circulation 104:2673–2678

    Article  CAS  PubMed  Google Scholar 

  13. Engel RR, Rich CH, Receveur O, Smith AH (1994) Vascular effects of chronic arsenic exposure: a review. Epidemiol Rev 16:184–209

    CAS  PubMed  Google Scholar 

  14. Wu MM, Chiou HY, Ho IC, Chen CJ, Lee TC (2003) Gene expression of inflammatory molecules in circulating lymphocytes from arsenic-exposed human subjects. Environ Health Perspect 111:1429–1438

    CAS  PubMed  Google Scholar 

  15. Barchowsky A, Roussel RR, Klei LR, James PE, Ganju N, Smith KR et al (1999) Low levels of arsenic trioxide stimulate proliferative signals in primary vascular cells without activating stress effector pathways. Toxicol Appl Pharmacol 159:65–75

    Article  CAS  PubMed  Google Scholar 

  16. Bunderson M, Coffin JD, Beall HD (2004) Arsenic exposure exacerbates atherosclerotic plaque formation and increases nitrotyrosine and leukotriene biosynthesis. Toxicol Appl Pharmacol 201:32–39

    Article  CAS  PubMed  Google Scholar 

  17. Tsou TC, Tsai FY, Hsieh YW, Li LA, Yen SC, Chang LW (2005) Arsenic induces cytotoxicity by down-regulation of vascular endothelial nitric oxide synthase. Toxicol Appl Pharmacol 208:277–284

    Article  CAS  PubMed  Google Scholar 

  18. Lynn S, Gurr JR, Lai HT, Jan KY (2000) NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Circ Res 86:514–519

    CAS  PubMed  Google Scholar 

  19. Smith KR, Klei LR, Barchowsky A (2001) Arsenite stimulates plasma membrane NAD(P)H oxidase in vascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 280:442–449

    Google Scholar 

  20. Balakumar P, Jindal S, Singh M (2007) Novel use of uric acid and sodium arsenite to induce vascular endothelial dysfunction. J Pharmacol Toxicol 2:437–446

    Article  CAS  Google Scholar 

  21. Jindal S, Singh M, Balakumar P (2008) Effect of bis (maltolato) oxovanadium (BMOV) in uric acid and sodium arsenite-induced vascular endothelial dysfunction in rats. Int J Cardiol 128:383–391

    Article  PubMed  Google Scholar 

  22. Berrone E, Beltramo E, Solimine C (2006) Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cell cultured in high glucose. J Biol Chem 281:9307–9313

    Article  CAS  PubMed  Google Scholar 

  23. Wu S, Ren J (2006) Benfotiamine alleviates diabetes-induced cerebral oxidative damage independent of advanced glycation end-product, tissue factor and TNF-α. Neurosci Lett 394:158–162

    Article  CAS  PubMed  Google Scholar 

  24. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt dependent phosphorylation. Nature 399:601–605

    Article  CAS  PubMed  Google Scholar 

  25. Shah DI, Singh M (2007) Possible role of Akt to improve vascular endothelial dysfunction in diabetic and hyperhomocysteinemic rats. Mol Cell Biochem 295:65–74

    Article  CAS  PubMed  Google Scholar 

  26. Shah DI, Singh M (2007) Effect of demethylasterriquinone b1 in hypertension associated vascular endothelial dysfunction. Int J Cardiol 120:317–324

    Article  PubMed  Google Scholar 

  27. Marchetti V, Menghinni R, Rizza S, Vivanti A, Feccia T, Lauro D, Fukamizu A, Lauro R, Federici1 M (2006) Benfotiamine counteracts glucose toxicity effects on endothelial progenitor cell differentiation via Akt/FOXO signaling. Diabetes 55:2231–2237

    Google Scholar 

  28. Gadau S, Emanueli C, Linthout SV, Graiani G, Todaro M, Meloni M, Campesi I, Invernici G, Spillmann F, Ward K, Madeddu P (2006) Benfotaimine accelerate the healing of ischaemic diabetic limbs in mice through protein kinase B/Akt-mediated potentiation of angiogenesis and inhibition of apoptosis. Diabetologia 49:405–420

    Article  CAS  PubMed  Google Scholar 

  29. Balakumar P, Sharma R, Singh M (2008) Benfotiamine attenuates nicotine and uric acid-induced vascular endothelial dysfunction in rats. Pharmacol Res 58:356–363

    Article  CAS  PubMed  Google Scholar 

  30. Mittra S, Singh M (1998) Possible mechanism of captopril induced endothelium-dependent relaxation in isolated rabbit aorta. Mol Cell Biochem 183:63–67

    Article  CAS  PubMed  Google Scholar 

  31. Shah DI, Singh M (2006) Possible role of exogenous cAMP to improve vascular endothelial dysfunction in hypertensive rats. Fundam Clin Pharmacol 20:595–604

    Article  CAS  PubMed  Google Scholar 

  32. Malczak HT, Buck RC (1997) Regeneration of endothelium in rat aorta after local freezing. Am J Pathol 86:133–148

    Google Scholar 

  33. Lai JCK, Tranfield EM, Walker DC, Dyck J, Kerjner A, Loo S, Wong D, McDonald PC, Moghadasian MH, Janet EW, McManus BM (2003) Ultra structural evidence of early endothelial damage in coronary arteries of rat cardiac allografts. J Heart Lung Transplant 22:993–1004

    Article  PubMed  Google Scholar 

  34. Sastry KV, Moudgal RP, Mohan J, Tyagu JS, Rao GS (2002) Spectrophotometric determination of serum nitrite and nitrate by copper–cadmium alloy. Annal Biochem 306:79–82

    Article  CAS  Google Scholar 

  35. Ibrahim MA, Asai H, Satoh S, Satoh N, Ueda S (2004) Effect of zaprinast on nitric oxide levels in serum and aortic tissue. Meth Find Exp Clin Pharmacol 26:19–24

    Article  CAS  Google Scholar 

  36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  37. Ma FX, Liu LY, Xiong XM (2003) Protective effects of lovastatin on vascular endothelium injured by low density lipoprotein. Acta Pharmacol Sin 24:1027–1032

    CAS  PubMed  Google Scholar 

  38. Wang HD, Pagano PJ, Du Y, Cayatte AJ, Quinn MT (1998) Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Circ Res 82:810–818

    CAS  PubMed  Google Scholar 

  39. States JC, Srivastava S, Chen Y, Barchowsky A (2008) Arsenic and cardiovascular diseases. Toxicol Sci 107:312–323

    Article  PubMed  Google Scholar 

  40. Kumagai Y, Pi J (2004) Molecular basis for arsenic-induced alteration in nitric oxide production and oxidative stress: implication of endothelial dysfunction. Toxicol Appl Pharmacol 198:450–457

    Article  CAS  PubMed  Google Scholar 

  41. Pennathur S, Heinecke JW (2007) Oxidative stress and endothelial dysfunction in vascular disease. Curr Diabetes Rep 10:257–264

    Article  Google Scholar 

Download references

Acknowledgment

We express our gratitude to Shri. Parveen Garg Ji, Honorable Chairman, ISF College of Pharmacy, Moga, Punjab, India for his inspiration and constant support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pitchai Balakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, S., Reddy, K. & Balakumar, P. The Defensive Effect of Benfotiamine in Sodium Arsenite-Induced Experimental Vascular Endothelial Dysfunction. Biol Trace Elem Res 137, 96–109 (2010). https://doi.org/10.1007/s12011-009-8567-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8567-7

Keywords

Navigation