Skip to main content

Advertisement

Log in

Staphylococcus aureus, platelets, and the heart

  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Infective endocarditis (IE) caused by Staphylococcus aureus is serious, burgeoning frequency, and growing increasingly resistant to antibiotics. S. aureus IE is associated with high morbidity and mortality rates in nosocomial and community-acquired settings. S. aureus is the most common, most virulent IE etiologic pathogen. S. aureus IE pathogenesis depends upon complex interaction among the pathogen, platelets, plasma proteins, and vascular endothelial cells. S. aureus coordinates the expression of key virulence factors required for the specific pathogenic phases of IE. Platelets, now appear to play an important role in antimicrobial host defense against S. aureus IE and other endovascular infections. Platelet microbicidal proteins are believed to significantly contribute to the antimicrobial properties of platelets; however, abnormal disposition of native or prosthetic cardiac valves is an important risk factor in S. aureus IE establishment and severity. Thus, the need to define the molecular mechanisms of S. aureus pathogenesis and host defense against IE is urgent. Understanding these mechanisms will yield new approaches for the prevention and treatment of such life-threatening cardiovascular infections due to S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Allen KD, Vardhan MS: Epidemiology of infective endocarditis. J Infect 2000, 40:99–100.

    PubMed  CAS  Google Scholar 

  2. Dyson C, Barnes RA, Harrison GA: Infective endocarditis: an epidemiological review of 128 episodes. J Infect 1999, 38:87–93.

    PubMed  CAS  Google Scholar 

  3. Mortara LA, Bayer AS: Staphylococcus aureus bacteremia and endocarditis. New diagnostic and therapeutic concepts. Infect Dis Clin North Am 1993, 7:53–68.

    PubMed  CAS  Google Scholar 

  4. Raviglione MC, Battan R, Pablos-Mendez A, et al.: Infections associated with Hickman catheters in patients with acquired immunodeficiency syndrome. Am J Med 1989, 86:780–786.

    PubMed  CAS  Google Scholar 

  5. Karchmer A: Infections of prosthetic valves and intravascular devices. In Principles and Practice of Infectious Diseases, edn 5. Edited by Mandell GL, Bennett JE, Dolin R. Philadelphia: Churchill Livingstone; 2000: 903–917.

    Google Scholar 

  6. Rubin M, Hathorn JW, Marshall D, et al.: Gram-positive infections and the use of vancomycin in 550 episodes of fever and neutropenia. Ann Intern Med 1988, 108:30–35. This retrospective review of neutropenic patients with cancer indicates that vancomycin is appropriate for febrile neutropenic patients when clinical or microbiological findings support its use.

    PubMed  CAS  Google Scholar 

  7. Jacobson MA, Gellerman H, Chambers H: Staphylococcus aureus bacteremia and recurrent staphylococcal infections in patients with acquired immunodeficiency syndrome and AIDS-related complex. Am J Med 1988, 85:172–176.

    Article  PubMed  CAS  Google Scholar 

  8. Hogevik H, Olaison L, Andersson R, Lindberg J, Alestig K: Epidemiologic aspects of infective endocarditis in an urban population. A 5-year prospective study. Medicine (Baltimore) November 1995, 74:324–339.

    CAS  Google Scholar 

  9. Fowler VG Jr, Sanders LL, Kong LK, et al.: Infective endocarditis due to Staphylococcus aureus: 59 prospectively identified cases with follow-up. Clin Infect Dis 1999, 28:106–114.

    PubMed  Google Scholar 

  10. Cheung AL, Eberhardt KJ, Chung E, et al.: Diminished virulence of a sar — /agr — mutant of Staphylococcus aureus. J Clin Invest 1994, 94:1815–1822.

    PubMed  CAS  Google Scholar 

  11. Booth MC, Cheung AL, Hatter KL, et al.: Staphylococcal accessory regulator (sar) in conjunction with agr contributes to Staphylococcus aureus virulence in endophthalmitis. Infect Immun 1997, 65:1550–1556.

    PubMed  CAS  Google Scholar 

  12. Cheung AL, Chien Y-T, and Bayer AS: Hyperproduction of alpha-hemolysin in a sigB mutant is associated with elevated SarA expression in Staphylococcus aureus. Infect Immun 1999, 67:1331–1337.

    PubMed  CAS  Google Scholar 

  13. Kornblum J, Kreiswirth B, Projan SJ, et al.: Agr, a polycistronic locus regulating exoprotein synthesis in Staphylococcus aureus. In Molecular Biology of the Staphylococci. Edited by Novick RP. New York: VCH Publishers, 1990:373–402.

    Google Scholar 

  14. Balaban N, Novick BP: Autocrine regulation of toxin synthesis by Staphylococcus aureus. Proc Natl Acad Sci USA 1995, 92:1619–1623.

    PubMed  CAS  Google Scholar 

  15. Balaban N, Goldkorn T, Nhan RT, et al.: Autoinducer of virulence as a target for vaccine and therapy against Staphylococcus aureus. Science 1998, 280:438–40.

    PubMed  CAS  Google Scholar 

  16. Navarre WW, Schneewind O: Surface proteins of grampositive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999, 63:174–229.

    PubMed  CAS  Google Scholar 

  17. Ogawa SK, Yurberg ER, Hatcher VB, et al.: Bacterial adherence to human endothelial cells in vitro. Infect Immun 1985, 50:218–224.

    PubMed  CAS  Google Scholar 

  18. Cheung AL, Krishnan M, Jaffe EA, Fischetti VA: Fibrinogen acts as a bridging molecule in the adherence of Staphylococcus aureus to cultured human endothelial cells. J Clin Invest 1991, 87:2236–2245.

    PubMed  CAS  Google Scholar 

  19. Moreillon P, Entenza JM, Francioli P, et al.: Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect Immun 1995, 63:4738–4743.

    PubMed  CAS  Google Scholar 

  20. Cheung AL, Yeaman MR, Sullam PM, et al.: Role of the sar locus of Staphylococcus aureus in induction of endocarditis in rabbits. Infect Immun 1994, 62:1719–1725.

    PubMed  CAS  Google Scholar 

  21. Kuypers JM, Proctor RA: Reduced adherence to traumatized rat heart valves by a low-fibronectin-binding mutant of Staphylococcus aureus. Infect Immun 1989, 57:2306–2312.

    PubMed  CAS  Google Scholar 

  22. Flock JI, Hienz SA, Heimdahl A, Schennings T: Reconsideration of the role of fibronectin binding in endocarditis caused by Staphylococcus aureus. Infect Immun 1996, 64:1876–1878.

    PubMed  CAS  Google Scholar 

  23. Nozohoor S, Heimdahl A, Colque-Navarro P, et al.: Virulence factors of Staphylococcus aureus in the pathogenesis of endocarditis. A comparative study of clinical isolates. Int J Med Microbiol Virol Parasitol Infect Dis 1998, 287:433–447. These authors studied 120 clinical isolates of S. aureus from patients with endocarditis and wound infections and from nasopharyngeal carriers to assess their ability to bind to fibronectin and to produce protein.

    CAS  Google Scholar 

  24. Peacock SJ, Foster TJ, Cameron BJ, Berendt AR: Bacterial fibronectin-binding proteins and endothelial cell surface fibronectin mediate adherence of Staphylococcus aureus to resting human endothelial cells. Microbiology 1999, 145:3477–3486.

    PubMed  CAS  Google Scholar 

  25. Hienz, SA, Schennings T, Heimdahl A, Flock JI: Collagen binding of Staphylococcus aureus is a virulence factor in experimental endocarditis. J Infect Dis 1996, 174:83–88.

    PubMed  CAS  Google Scholar 

  26. Shenkman B, Rubinstein E, Tamarin I, et al.: Staphylococcus aureus adherence to thrombin-treated endothelial cells is mediated by fibrinogen but not by platelets. J Lab Clin Med 2000, 135:43–51.

    PubMed  CAS  Google Scholar 

  27. Campbell KM, Johnson CM: Identification of Staphylococcus aureus binding proteins on isolated porcine cardiac valve cells. J Lab Clin Med 1990, 115:217–223.

    PubMed  CAS  Google Scholar 

  28. Tompkins DC, Blackwell LJ, Hatcher VB, et al.: Staphylococcus aureus proteins that bind to human endothelial cells. Infect Immun 1992, 60:965–969.

    PubMed  CAS  Google Scholar 

  29. Sullam PM, Bayer AS, Foss WM, Cheung AL: Diminished platelet binding in vitro by Staphylococcus aureus is associated with reduced virulence in a rabbit model of infective endocarditis. Infect Immun 1996, 64:4915–4921.

    PubMed  CAS  Google Scholar 

  30. Wu T, Yeaman MR, Bayer AS: In vitro resistance to platelet microbicidal protein correlates with endocarditis source among staphylococcal isolates. Antimicrob Agents Chemother 1994, 38:729–732.

    PubMed  CAS  Google Scholar 

  31. Bayer AS, Cheng D, Yeaman MR, et al.: In vitro resistance to thrombin-induced platelet microbicidal protein among clinical bacteremic isolates of Staphylococcus aureus correlates with an endovascular infectious source. Antimicrob Agents Chemother 1998, 42:3169–3172.

    PubMed  CAS  Google Scholar 

  32. Bayer AS, Ramos MD, Menzies BE, et al.: Hyperproduction of a-toxin by Staphylococcus aureus results in paradoxicallyreduced virulence in experimental endocarditis: a host defense role for platelet microbicidal proteins. Infect Immun 1997, 65:4652–4660.

    PubMed  CAS  Google Scholar 

  33. Proctor RA, Peters G: Small colony variants in staphylococcal infections: diagnostic and therapeutic implications. Clin Infect Dis 1998, 27:419–422.

    PubMed  CAS  Google Scholar 

  34. Proctor RA, Balwit JM, Vesga O: Variant subpopulations of Staphylococcus aureus as cause of persistent and recurrent infections. Infect Agents Dis 1994, 3:302–312. This study focuses on the increased resistance to antibiotics, slow growth, and unusual colony morphology of S. aureus small colony variants.

    PubMed  CAS  Google Scholar 

  35. Balwit JM, van Langevelde P, Vann JM, Proctor RA: Gentamicinresistant menadione and hemin auxotrophic Staphylococcus aureus persist within cultured endothelial cells. J Infect Dis 1994, 170:1033–1037.

    PubMed  CAS  Google Scholar 

  36. Koo SP, Bayer AS, Sahl HG, et al.: Staphylocidal action of thrombin-induced platelet microbicidal protein is not solely dependent on transmembrane potential. Infect Immun 1996, 64:1070–1074.

    PubMed  CAS  Google Scholar 

  37. Yeaman MR, Bayer AS, Koo SP, et al.: Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action. J Clin Invest 1998, 101:178–187.

    PubMed  CAS  Google Scholar 

  38. Yeaman MR: The role of platelets in antimicrobial host defense. Clin Infect Dis 1997, 25:951–970.

    PubMed  CAS  Google Scholar 

  39. Yeaman MR, Bayer AS: Antimicrobial peptides from platelets. Drug Resistance Updates 1999, 2:116–126.

    PubMed  CAS  Google Scholar 

  40. Nachum R, Watson SW, Sullivan JD Jr, Siegel SE: Antimicrobial defense mechanisms in the horseshoe crab, Limulus polyphemus: preliminary observations with heat-derived extracts of Limulus amoebocyte lysate. J Invertebr Pathol 1980, 32:51–58.

    Google Scholar 

  41. Maluf NSR: The blood of arthropods. Q Rev Biol 1939, 14:149–191.

    CAS  Google Scholar 

  42. Weksler BB: Platelets. In Inflammation: Basic Principles and Clinical Correlates edn 2. Edited by Gallin JI, Goldstein IM, Snyderman R. New York: Raven Press; 1992.

    Google Scholar 

  43. Tocantins LM: The mammalian blood platelet in health and disease. Medicine 1938, 17:155–257.

    Google Scholar 

  44. White JG: Platelet morphology and function. In Hematology Edited by Williams WJ, Beutler E, Erslev AJ, Rundles RW. New York: McGraw-Hill; 1972:1023–1039.

    Google Scholar 

  45. Colman RW: Receptors that activate platelets. Proc Soc Exp Biol Med 1991, 197:242–248.

    PubMed  CAS  Google Scholar 

  46. MacFarlane DE, Mills DCB: The effects of ATP on platelets: evidence against the central role of released ADP in primary aggregation. Blood 1975, 46:309–314.

    PubMed  CAS  Google Scholar 

  47. MacFarlane DE, Walsh PN, Mills DCB, et al.: The role of thrombin in ADP-induced platelet aggregation and release: a critical evaluation. Br J Haematol 1975, 30:457–464.

    PubMed  CAS  Google Scholar 

  48. Davies TA, Fine RE, Johnson RJ, et al.: Non-age related differences in thrombin responses by platelets from male patients with advanced Alzheimer’s disease. Biochem Biophys Res Commun 1993, 194:537–543.

    PubMed  CAS  Google Scholar 

  49. Bancsi MJLF, Thompson J, Bertina RM: Stimulation of monocyte tissue factor expression in an in vitro model of bacterial endocarditis. Infect Immun 1994, 62:5669–5672.

    PubMed  CAS  Google Scholar 

  50. Drake, TA, Pang M: Staphylococcus aureus induces tissue factor expression in cultured human cardiac valve endothelium. J Infect Dis 1988, 157:749–756.

    PubMed  CAS  Google Scholar 

  51. Drake TA, Rodgers GM, Sande MA: Tissue factor is a major stimulus for vegetation formation in enterococcal endocarditis in rabbits. J Clin Invest 1984, 73:1750–1753.

    PubMed  CAS  Google Scholar 

  52. Parmentier S, Kaplan C, Catimel B, McGregor JL: New families of adhesion molecules play a vital role in platelet functions. Immunol Today 1990, 11:225–227.

    PubMed  CAS  Google Scholar 

  53. White JG: Views of the platelet at rest and at work. Ann N y Acad Sci 1987, 509:156–176.

    PubMed  CAS  Google Scholar 

  54. White JG, Sauk JJ: Microtubule coils in spread blood platelets. Blood 1984, 64:470–478.

    PubMed  CAS  Google Scholar 

  55. Scheld WM, Valone JA, Sande MA: Bacterial adherence in the pathogenesis of infective endocarditis: interaction of dextran, platelets, & fibrin. J Clin Invest 1978, 61:1394–1404.

    PubMed  CAS  Google Scholar 

  56. Durack DT. Experimental bacterial endocarditis. IV. Structure and evolution of very early lesions. J Clin Pathol 1975, 45:81–89.

    Google Scholar 

  57. Durack DT, Beeson PB, Petersdorf RG: Experimental bacterial endocarditis. III. Production and progress of the disease in rabbits. Br J Exp Pathol 1973, 54:142–151.

    PubMed  CAS  Google Scholar 

  58. Herzberg MC, Gong K, MacFarlane GD, et al.: Phenotypic characterization of Streptococcus sanguis virulence factors associated with bacterial endocarditis. Infect Immun 1990, 58:515–522.

    PubMed  CAS  Google Scholar 

  59. Clawson CC: Role of platelets in the pathogenesis of endocarditis in infectious endocarditis. Am Heart Assoc Monograph 1977, 52:24–27.

    Google Scholar 

  60. Nicolau DP, Freeman CD, Nightingale CH, et al.: Reduction of bacterial titers by low-dose aspirin in experimental aortic valve endocarditis. Infect Immun 1993, 61:1593–1595.

    PubMed  CAS  Google Scholar 

  61. Clawson, CC White JG: Platelet interaction with bacteria. II. Fate of bacteria. Am J Pathol 1971, 65:381–398.

    PubMed  CAS  Google Scholar 

  62. Peng J, Friese P, George JN, et al.: Alteration of platelet function in dogs mediated by interleukin-6. Blood 1994, 83:398–403.

    PubMed  CAS  Google Scholar 

  63. Movat HZ, Weiser WJ, Glynn MF, Mustard JF: Platelet phagocytosis and aggregation. J. Cell Biol. 1965, 27:531–543.

    PubMed  CAS  Google Scholar 

  64. Yeaman MR, Sullam PM, Dazin PF, et al.: Characterization of Staphylococcus aureus-platelet interaction by quantitative flow cytometry. J Infect Dis 1992, 166:65–73.

    PubMed  CAS  Google Scholar 

  65. Siboo I, Bayer AS, Kupferwasser LI, et al.: Clumping factor (ClfA) mediates the binding of Staphylococcus aureus to human platelets [abstract]. American Society for Microbiology, Los Angeles, 2000.

  66. Hartleib J, Koehler N, Dickinson R, et al.: Binding mechanisms of Staphylococcus aureus to von Willebrand factor: protein A revisited [abstract]. In Proceedings of the Interscience Conference on Antimicrobial Agents and Chemotherapy. San Diego, 1998.

  67. Bayer AS, Sullam PM, Ramos M, et al.: Staphylococcus aureus induces platelet aggregation via a fibrinogen-dependent mechanism which is independent of principal platelet glycoprotein IIb/IIIa fibrinogen-binding domains. Infect Immun 1995, 63:3634–3641.

    PubMed  CAS  Google Scholar 

  68. Clawson CC, White JG: Platelet interaction with bacteria. I. Reaction phases and effects of inhibitors. Am J Pathol 1971, 65:367–380.

    PubMed  CAS  Google Scholar 

  69. Clawson CC: Platelet interaction with bacteria. III. Ultrastructure. Am J Pathol 1973, 70:449–472.

    PubMed  CAS  Google Scholar 

  70. Clawson CC, Rao GHR, White JG: Platelet interaction with bacteria. IV. Stimulation of the release reaction. Am J Pathol 1975, 81:411–420.

    PubMed  CAS  Google Scholar 

  71. Fodor J: Die fahigkeit des blutes bakterien zu vernichten. Dtsch Med Wochenschr 1887, 13:745–747.

    Article  Google Scholar 

  72. Gengou O: De lorigine de laxenine de serums normaux. Ann Inst Pasteur (Paris) 1901, 15:232–245.

    Google Scholar 

  73. Hirsch JG: Comparative bactericidal activities of blood serum and plasma serum. J Exp Med 1960, 112:15–22.

    PubMed  CAS  Google Scholar 

  74. Dankert J: Role of platelets in early pathogenesis of viridans group streptococcal endocarditis. Groningen, The Netherlands: University of Groningen; 1988. Dissertation.

    Google Scholar 

  75. Yeaman MR, Puentes SM, Norman DC, Bayer AS: Partial purification and staphylocidal activity of thrombininduced platelet microbicidal protein. Infect Immun 1992, 60:1202–1209.

    PubMed  CAS  Google Scholar 

  76. Yeaman MR, Tang YQ, Shen AJ, et al.: Purification and in vitro activities of rabbit platelet microbicidal proteins. Infect Immun 1997, 65:1023–1031.

    PubMed  CAS  Google Scholar 

  77. Bancsi MJLF, Thompson J, Bertina RM: Stimulation of monocyte tissue factor expression in an in vitro model of bacterial endocarditis. Infect Immun 1994, 62:5669–5672.

    PubMed  CAS  Google Scholar 

  78. Azizi N, Li C, Shen AJ, et al.: Staphylococcus aureus elicits release of platelet microbicidal proteins in vitro [abstract]. In Proceedings of the Interscience Conference on Antimicrobial Agents and Chemotherapy, New Orleans, 1996.

  79. Bayer AS, Ramos MD, Menzies BE, et al.: Hyperproduction of a-toxin by Staphylococcus aureus results in paradoxicallyreduced virulence in experimental endocarditis: a host defense role for platelet microbicidal proteins. Infect Immun 1997, 65:4652–4660.

    PubMed  CAS  Google Scholar 

  80. Tang YQ, Yeaman MR, Selsted ME: Purfication, characterization, and antimicrobial properties of peptides released from thrombin-induced human platelets [abstract]. American Society of Hematology. Seattle, 1995.

  81. Tang, YQ, M.R. Yeaman, M.E. Selsted: Microbicidal and synergistic activities of human platelet factor-4 (hPF-4) and connective tissue activating peptide-3 (CTAP-3) [abstract]. American Society of Hematology. Seattle, 1995.

  82. Krijgsveld J, Zaat SA, Kuijpers AJ, et al.: Thrombocidins, bactericidal proteins from human blood platelets, are C-terminal deletion products of CXC-chemokines [abstract]. In Proceedings of the Interscience Conference on Antimicrobial Agents and Chemotherapy. San Diego, 1998.

  83. Ganz T, Selsted ME, Lehrer RI: Defensins. Eur J Haematol 1990, 44:1–8.

    PubMed  CAS  Google Scholar 

  84. Zasloff M: Antibiotic peptides as mediators of innate immunity. Curr Opin Immunol 1992, 4:3–8.

    PubMed  CAS  Google Scholar 

  85. Bowman HG: Antibacterial peptides: key components in immunity. Cell 1991, 65:205–211.

    Google Scholar 

  86. Taylor R: Drugs R Us: finding new antibiotics at the endogenous pharmacy. J NIH Res 1993, 5:59–63.

    Google Scholar 

  87. Koo SP, Yeaman MR, Bayer AS: Staphylocidal action of thrombin-induced platelet microbicidal protein is influenced by microenvironment and target cell growth phase. Infect Immun 1996, 64:3758–3764.

    PubMed  CAS  Google Scholar 

  88. Yeaman MR, Bayer AS, Koo SP, et al.: Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action. J Clin Invest 1998, 101:178–187. These authors investigated the mechanism of action of platelet microbicidal proteins leading to damage of the S. aureus cytoplasmic membrane ultrastructure and cell death.

    Article  PubMed  CAS  Google Scholar 

  89. Koo SP, Bayer AS, Sahl HG, et al.: Staphylocidal action of thrombin-induced platelet microbicidal protein is not solely dependent on transmembrane potential. Infect Immun 1996, 64:1070–1074.

    PubMed  CAS  Google Scholar 

  90. Koo SP, Yeaman MR, Nast CC, Bayer AS: The cytoplasmic membrane is a primary target for the staphylocidal action of thrombin-induced platelet microbicidal protein. Infect. Immun 1997, 65:4795–4800.

    PubMed  CAS  Google Scholar 

  91. Xiong YQ, Yeaman MR, Bayer AS: In vitro antibacterial activities of platelet microbicidal protein and neutrophil defensin against Staphylococcus aureus are influenced by antibiotics differing in mechanism of action. Antimicrob Agents Chemother 1999, 43:1111–1117.

    PubMed  CAS  Google Scholar 

  92. Van Den Broek PJ, Bril-Bazuin C, Mattie H: Antibacterial activity of defensins against Staphylococcus aureus pretreated with benzyl penicillin or azithromycin [abstract]. In Proceedings of the Interscience Conference on Antimicrobial Agents and Chemotherapy. New Orleans, 1996.

  93. Yeaman MR, Sullam PM, Dazin PF, Bayer AS: Characterization of Staphylococcus aureus-platelet binding by quantitative flow cytometric analysis. J Infect Dis 1992, 166:65–73.

    PubMed  CAS  Google Scholar 

  94. Yeaman MR, Sullam PM, Dazin PF, Bayer AS: Platelet microbicidal protein alone and in combination with antibiotics reduces Staphylococcus aureus adherence to platelets in vitro. Infect Immun 1994, 62:3416–3423.

    PubMed  CAS  Google Scholar 

  95. Yeaman MR, Norman DC, Bayer AS: Platelet microbicidal protein enhances antibiotic-induced killing of and postantibiotic effect in Staphylococcus aureus. Antimicrob Agents Chemother 1992, 36:1665–1670.

    PubMed  CAS  Google Scholar 

  96. Bayer AS, Cheng D, Yeaman MR, et al.: In vitro resistance to thrombin-induced platelet microbicidal protein among clinical bacteremic isolates of Staphylococcus aureus correlates with an endovascular infectious source. Antimicrob Agents Chemother 1998, 42:3169–3172.

    PubMed  CAS  Google Scholar 

  97. Dhawan VK, Yeaman MR, Kim E, Bayer AS: Phenotypic resistance to thrombin-induced platelet microbicidal protein in vitro is correlated with enhanced virulence in experimental endocarditis due to Staphylococcus aureus. Infect Immun 1997, 65:3293–3299.

    PubMed  CAS  Google Scholar 

  98. Dhawan VK, Bayer AS, Yeaman MR: In vitro resistance to thrombin-induced platelet microbicidal protein is associated with enhanced progression and hematogenous dissemination in experimental Staphylococcus aureus infective endocarditis. Infect Immun 1998, 66:3476–3479.

    PubMed  CAS  Google Scholar 

  99. Dhawan VK, Yeaman MR, Bayer AS: Influence of in vitro susceptibility phenotype against thrombin-induced platelet microbicidal protein on treatment and prophylaxis outcomes of experimental Staphylococcus aureus endocarditis. J Infect Dis 1999, 180:1561–1568.

    PubMed  CAS  Google Scholar 

  100. Viscoli C, Bruzzi P, Castagnola E, et al.: Factors associated with bacteraemia in febrile, granulocytopenic patients. The International Antimicrobial Therapy Cooperative Group (IATCG) of the European Organization for Research and Treatment of Cancer (EORTC). Eur J Cancer 1994, 30:430–437.

    Google Scholar 

  101. Feldman C, Kallenbach JM, Levy H, et al.: Comparision of bacteraemic community-acquired lobar pneumonia due to Streptococcus pneumoniae and Klebsiella pneumoniae in an intensive care unit. Respiration 1991, 58:265–270.

    PubMed  CAS  Google Scholar 

  102. Berney P, Francioli P: Successful prophylaxis of experimental streptococcal endocarditis with single-dose amoxicillin administered after bacterial challenge. J Infect Dis 1990, 161:281–285.

    PubMed  CAS  Google Scholar 

  103. Yersin BR, Glauser MP, Freedman LR: Effect of nitrogen mustard on natural history of right-sided streptococcal endocarditis in rabbits: role for cellular host defenses. Infect Immun 1982, 35:320–325.

    PubMed  CAS  Google Scholar 

  104. Sullam PM, Frank U, Yeaman MR, et al.: Effect of thrombocytopenia on the early course of streptococcal endocarditis. J Infect Dis 1993, 168:910–914.

    PubMed  CAS  Google Scholar 

  105. Dankert J, van der Werff J, Zaat SAJ, et al.: Involvement of bactericidal factors from thrombin-stimulated platelets in clearance of adherent viridans streptococci in experimental infective endocarditis. Infect Immun 1995, 63:663–671.

    PubMed  CAS  Google Scholar 

  106. Korzweniowski OM, Scheld WM, Bithell TC et al.: The effect of aspirin on the production of experimental Staphylococcus aureus endocarditis [abstract]. In Proceedings of the Interscience Conference on Antimicrobial Agents and Chemotherapy. Boston, 1979.

  107. Tornos P, Almirante B, Mirabet S, et al.: Infective endocarditis due to Staphylococcus aureus: deleterious effect of anticoagulant therapy. Arch Intern Med 1999, 159:473–475.

    PubMed  CAS  Google Scholar 

  108. Yao L, Lowy FD, Berman JW: Interleukin-8 gene expression in Staphylococcus aureus-infected endothelial cells. Infect Immun 1996, 64:3407–3409.

    PubMed  CAS  Google Scholar 

  109. Yao L, Benhualid V, Lowy FD, et al.: Internalization of Staphylococcus aureus by endothelial cells induces cytokine gene expression. Infect Immun 1995, 63:1835–1839.

    PubMed  CAS  Google Scholar 

  110. Bengualid V, Hatcher VB, Diamond B, et al.: Staphylococcus aureus infection of human endothelial cells potentiates Fc receptor expression. J Immunol 1990, 145:4279–4283.

    PubMed  CAS  Google Scholar 

  111. Vesga O, Groeschel MC, Otten MF, et al.: Staphylococcus aureus small colony variants are induced by the endothelial cell intracellular milieu. J Infect Dis 1996, 173:739–742.

    PubMed  CAS  Google Scholar 

  112. Vann JM, Proctor RA: Cytotoxic effects of ingested Staphylococcus aureus on bovine endothelial cells: role of S. aureus alpha-hemolysin. Microb Pathog 1998, 4:443–453.

    Google Scholar 

  113. Schoen FJ, Levy RJ: Pathology of substitute heart valves: new concepts and developments. J Card Surg 1994, 9:222–227.

    PubMed  CAS  Google Scholar 

  114. John MD, Hibberd PL, Karchmer AW, et al.: Staphylococcus aureus prosthetic valve endocarditis: optimal management and risk factors for death. Clin Infect Dis 1998, 26:1302–1309.

    PubMed  CAS  Google Scholar 

  115. Mansur AJ, Grinberg M, Cardoso RH, et al.: Determinants of prognosis in 300 episodes of infective endocarditis. Thorac Cardiovasc Surg 1996, 44:2–10. These authors evaluated clinical and laboratory prognoosis determinants in this important study.

    Article  PubMed  CAS  Google Scholar 

  116. Shi Q, Wu MH, Onuki Y, et al.: The effect of flow shear stress on endothelialization of impervious Dacron grafts from circulating cells in the arterial and venous systems of the same dog. Ann Vasc Surg 1998, 12:341–348.

    PubMed  CAS  Google Scholar 

  117. Kadletz M, Wolfrum K, Grimm M, et al.: Experimental studies of extracellular matrix constituents for coating artificial prostheses before endothelialization [in German]. Z Exp Chir Transplant Kunstliche Organe 1990, 23:158–161.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeaman, M.R., Bayer, A.S. Staphylococcus aureus, platelets, and the heart. Curr Infect Dis Rep 2, 281–298 (2000). https://doi.org/10.1007/s11908-000-0005-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-000-0005-0

Keywords

Navigation