Skip to main content

Advertisement

Log in

Iron Metabolism in Nonalcoholic Fatty Liver Disease

  • Liver (BR Bacon, Section Editor)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Non-Alcoholic Fatty Liver Disease (NAFLD) is a common worldwide clinical and major public health problem affecting both adults and children in developed nations. Increased hepatic iron stores are observed in about one-third of adult NAFLD patients. Iron deposition may occur in parenchymal and/or non-parenchymal cells of the reticuloendothelial system (RES). Similar patterns of iron deposition have been associated with increased severity of other chronic liver diseases including HCV infection and dysmetabolic iron overload, suggesting there may be a common mechanism for hepatic iron deposition in these diseases. In NAFLD, iron may potentiate the onset and progression of disease by increasing oxidative stress and altering insulin signaling and lipid metabolism. The impact of iron in these processes may depend upon the sub-cellular location of iron deposition in hepatocytes or RES cells. Iron depletion therapy has shown efficacy at reducing serum aminotransferase levels and improving insulin sensitivity in subjects with NAFLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science. 2011;332:1519–23.

    Article  PubMed  CAS  Google Scholar 

  2. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114:842–5.

    Article  PubMed  CAS  Google Scholar 

  3. George DK, Goldwurm S, MacDonald GA, et al. Increased hepatic iron concentration in nonalcoholic steatohepatitis is associated with increased fibrosis. Gastroenterology. 1998;114:311–8.

    Article  PubMed  CAS  Google Scholar 

  4. Bacon BR, Farahvash MJ, Janney CG, Neuschwander-Tetri BA. Nonalcoholic steatohepatitis: an expanded clinical entity. Gastroenterology. 1994;107:1103–9.

    PubMed  CAS  Google Scholar 

  5. Sumida Y, Nakashima T, Yoh T, et al. Serum thioredoxin levels as a predictor of steatohepatitis in patients with nonalcoholic fatty liver disease. J Hepatol. 2003;38:32–8.

    Article  PubMed  CAS  Google Scholar 

  6. Akin K, Beyler AR, Kaya M, Erden E. The importance of iron and copper accumulation in the pathogenesis of non-alcoholic steatohepatitis. Turk J Gastroenterol. 2003;14:228–33.

    PubMed  Google Scholar 

  7. Bugianesi E, Manzini P, D’Antico S, et al. Relative contribution of iron burden, HFE mutations, and insulin resistance to fibrosis in nonalcoholic fatty liver. Hepatology. 2004;39:179–87.

    Article  PubMed  CAS  Google Scholar 

  8. Chitturi S, Weltman M, Farrell GC, et al. HFE mutations, hepatic iron, and fibrosis: ethnic-specific association of NASH with C282Y but not with fibrotic severity. Hepatology. 2002;36:142–9.

    Article  PubMed  CAS  Google Scholar 

  9. Younossi ZM, Gramlich T, Bacon BR, et al. Hepatic iron and nonalcoholic fatty liver disease. Hepatology. 1999;30:847–50.

    Article  PubMed  CAS  Google Scholar 

  10. Zamin Jr I, Mattos AA, Mattos AZ, et al. Prevalence of the hemochromatosis gene mutation in patients with nonalcoholic steatohepatitis and correlation with degree of liver fibrosis. Arq Gastroenterol. 2006;43:224–8.

    Article  PubMed  Google Scholar 

  11. Deugnier Y, Turlin B. Pathology of hepatic iron overload. World J Gastroenterol. 2007;13:4755–60.

    PubMed  CAS  Google Scholar 

  12. Brunt EM. Pathology of hepatic iron overload. Semin Liver Dis. 2005;25:392–401.

    Article  PubMed  CAS  Google Scholar 

  13. •• Nelson JE, Wilson L, Brunt EM, et al.: Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease. Hepatology 2011, 53:448–457. This study performed on 849 subjects enrolled in the US NASH Clinical Research Network, established that one third of NAFLD subjects have hepatic iron deposits and that the pathogenic effects of iron depend upon the cellular location within the liver.

    Article  PubMed  CAS  Google Scholar 

  14. Sorrentino P, D’Angelo S, Ferbo U, et al. Liver iron excess in patients with hepatocellular carcinoma developed on non-alcoholic steato-hepatitis. J Hepatol. 2009;50:351–7.

    Article  PubMed  CAS  Google Scholar 

  15. •• Valenti L, Fracanzani AL, Bugianesi E, et al.: HFE genotype, parenchymal iron accumulation, and liver fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 2010, 138:905–912. The second largest study to date investigating the effects of iron and HFE mutations in NAFLD, reported that hepatocellular iron, but not HFE mutations, contribute to increased fibosis in a large Italian cohort.

    Article  PubMed  CAS  Google Scholar 

  16. Kowdley KV. The role of iron in nonalcoholic fatty liver disease: the story continues. Gastroenterology. 2010;138:817–9.

    Article  PubMed  Google Scholar 

  17. Ganz T. Hepcidin–a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract Res Clin Haematol. 2005;18:171–82.

    Article  PubMed  CAS  Google Scholar 

  18. Xiong S, She H, Tsukamoto H. Signaling role of iron in NF-kappa B activation in hepatic macrophages. Comp Hepatol. 2004;3 Suppl 1:S36.

    Article  PubMed  Google Scholar 

  19. Tsukamoto H. Iron regulation of hepatic macrophage TNFalpha expression. Free Radic Biol Med. 2002;32:309–13.

    Article  PubMed  CAS  Google Scholar 

  20. Xiong S, She H, Sung CK, Tsukamoto H. Iron-dependent activation of NF-kappaB in Kupffer cells: a priming mechanism for alcoholic liver disease. Alcohol. 2003;30:107–13.

    Article  PubMed  CAS  Google Scholar 

  21. De Domenico I, Ward DM, Langelier C, et al. The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol Biol Cell. 2007;18:2569–78.

    Article  PubMed  Google Scholar 

  22. •• Nemeth E, Tuttle MS, Powelson J, et al.: Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004, 306:2090–2093. This landmark study established how hepcidin controls iron homeostasis.

    Article  PubMed  CAS  Google Scholar 

  23. Wang RH, Li C, Xu X, et al. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell Metab. 2005;2:399–409.

    Article  PubMed  CAS  Google Scholar 

  24. Gao J, Chen J, Kramer M, et al. Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression. Cell Metab. 2009;9:217–27.

    Article  PubMed  CAS  Google Scholar 

  25. Goswami T, Andrews NC. Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. J Biol Chem. 2006;281:28494–8.

    Article  PubMed  CAS  Google Scholar 

  26. Schmidt PJ, Toran PT, Giannetti AM, et al. The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression. Cell Metab. 2008;7:205–14.

    Article  PubMed  Google Scholar 

  27. Lee P, Peng H, Gelbart T, et al. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci USA. 2005;102:1906–10.

    Article  PubMed  CAS  Google Scholar 

  28. Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood. 2006;108:3204–9.

    Article  PubMed  CAS  Google Scholar 

  29. Choi SO, Cho YS, Kim HL, Park JW. ROS mediate the hypoxic repression of the hepcidin gene by inhibiting C/EBPalpha and STAT-3. Biochem Biophys Res Commun. 2007;356:312–7.

    Article  PubMed  CAS  Google Scholar 

  30. Pinto JP, Ribeiro S, Pontes H, et al. Erythropoietin mediates hepcidin expression in hepatocytes through EPOR signaling and regulation of C/EBPalpha. Blood. 2008;111:5727–33.

    Article  PubMed  CAS  Google Scholar 

  31. Harrison-Findik DD, Schafer D, Klein E, et al. Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. J Biol Chem. 2006;281:22974–82.

    Article  PubMed  CAS  Google Scholar 

  32. Oliveira SJ, Pinto JP, Picarote G, et al. ER stress-inducible factor CHOP affects the expression of hepcidin by modulating C/EBPalpha activity. PLoS One. 2009;4:e6618.

    Article  PubMed  Google Scholar 

  33. Aigner E, Theurl I, Theurl M, et al. Pathways underlying iron accumulation in human nonalcoholic fatty liver disease. Am J Clin Nutr. 2008;87:1374–83.

    PubMed  CAS  Google Scholar 

  34. Barisani D, Pelucchi S, Mariani R, et al. Hepcidin and iron-related gene expression in subjects with Dysmetabolic Hepatic Iron Overload. J Hepatol. 2008;49:123–33.

    Article  PubMed  CAS  Google Scholar 

  35. Bekri S, Gual P, Anty R, et al. Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology. 2006;131:788–96.

    Article  PubMed  CAS  Google Scholar 

  36. Senates E, Yilmaz Y, Colak Y, et al.: Serum Levels of Hepcidin in Patients with Biopsy-Proven Nonalcoholic Fatty Liver Disease. Metab Syndr Relat Disord 2011;9:287–290.

    Google Scholar 

  37. Floreani A, Navaglia F, Rizzotto ER, et al. Mass spectrometry measurement of plasma hepcidin for the prediction of iron overload. Clin Chem Lab Med. 2011;49:197–206.

    Article  PubMed  CAS  Google Scholar 

  38. Pietrangelo A. Metals, oxidative stress, and hepatic fibrogenesis. Semin Liver Dis. 1996;16:13–30.

    Article  PubMed  CAS  Google Scholar 

  39. Nakashima T, Sumida Y, Furutani M, et al. Elevation of serum thioredoxin levels in patients with nonalcoholic steatohepatitis. Hepatol Res. 2005;33:135–7.

    PubMed  CAS  Google Scholar 

  40. Malaguarnera L, Madeddu R, Palio E, et al. Heme oxygenase-1 levels and oxidative stress-related parameters in non-alcoholic fatty liver disease patients. J Hepatol. 2005;42:585–91.

    Article  PubMed  CAS  Google Scholar 

  41. MacDonald GA, Bridle KR, Ward PJ, et al. Lipid peroxidation in hepatic steatosis in humans is associated with hepatic fibrosis and occurs predominately in acinar zone 3. J Gastroenterol Hepatol. 2001;16:599–606.

    Article  PubMed  CAS  Google Scholar 

  42. Fujita N, Miyachi H, Tanaka H, et al. Iron overload is associated with hepatic oxidative damage to DNA in nonalcoholic steatohepatitis. Cancer Epidemiol Biomarkers Prev. 2009;18:424–32.

    Article  PubMed  CAS  Google Scholar 

  43. Tsukamoto H, Rippe R, Niemela O, Lin M. Roles of oxidative stress in activation of Kupffer and Ito cells in liver fibrogenesis. J Gastroenterol Hepatol. 1995;10 Suppl 1:S50–3.

    Article  PubMed  Google Scholar 

  44. Tsukamoto H, Lin M, Ohata M, et al. Iron primes hepatic macrophages for NF-kappaB activation in alcoholic liver injury. Am J Physiol. 1999;277:G1240–50.

    PubMed  CAS  Google Scholar 

  45. • Chen L, Xiong S, She H, et al.: Iron causes interactions of TAK1, p21ras, and phosphatidylinositol 3-kinase in caveolae to activate IkappaB kinase in hepatic macrophages. J Biol Chem 2007, 282:5582–5588. An elegant study showing detailed analysis of the effects of iron on several signal transduction pathways within hepatic macrophages.

    Article  PubMed  CAS  Google Scholar 

  46. Hanada T, Yoshimura A. Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev. 2002;13:413–21.

    Article  PubMed  CAS  Google Scholar 

  47. Kershenobich SD, Weissbrod AB. Liver fibrosis and inflammation. A review Ann Hepatol. 2003;2:159–63.

    Google Scholar 

  48. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134:1655–69.

    Article  PubMed  CAS  Google Scholar 

  49. •• Otogawa K, Kinoshita K, Fujii H, et al.: Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis: implications for the pathogenesis of human nonalcoholic steatohepatitis. Am J Pathol 2007, 170:967–980. This study provides mechanistic insight into the accumulation or iron in Kupffer cells and strong evidence that iron-laden Kupffer cells increase hepatic oxidative stress, inflammation and fibrosis in an animal model of NASH.

    Article  PubMed  CAS  Google Scholar 

  50. Fernandez-Real JM, Lopez-Bermejo A, Ricart W. Cross-talk between iron metabolism and diabetes. Diabetes. 2002;51:2348–54.

    Article  PubMed  CAS  Google Scholar 

  51. Barton JC, Acton RT, Leiendecker-Foster C, et al. Characteristics of participants with self-reported hemochromatosis or iron overload at HEIRS study initial screening. Am J Hematol. 2008;83:126–32.

    Article  PubMed  Google Scholar 

  52. Kulaksiz H, Fein E, Redecker P, et al. Pancreatic beta-cells express hepcidin, an iron-uptake regulatory peptide. J Endocrinol. 2008;197:241–9.

    Article  PubMed  CAS  Google Scholar 

  53. Kishimoto M, Endo H, Hagiwara S, et al. Immunohistochemical findings in the pancreatic islets of a patient with transfusional iron overload and diabetes: case report. J Med Invest. 2010;57:345–9.

    Article  PubMed  Google Scholar 

  54. MacDonald MJ, Cook JD, Epstein ML, Flowers CH. Large amount of (apo)ferritin in the pancreatic insulin cell and its stimulation by glucose. FASEB J. 1994;8:777–81.

    PubMed  CAS  Google Scholar 

  55. Tiedge M, Lortz S, Drinkgern J, Lenzen S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes. 1997;46:1733–42.

    Article  PubMed  CAS  Google Scholar 

  56. Rumberger JM, Peters Jr T. Burrington C, Green A: Transferrin and iron contribute to the lipolytic effect of serum in isolated adipocytes. Diabetes. 2004;53:2535–41.

    Article  PubMed  CAS  Google Scholar 

  57. Green A, Basile R, Rumberger JM. Transferrin and iron induce insulin resistance of glucose transport in adipocytes. Metabolism. 2006;55:1042–5.

    Article  PubMed  CAS  Google Scholar 

  58. Niederau C, Berger M, Stremmel W, et al. Hyperinsulinaemia in non-cirrhotic haemochromatosis: impaired hepatic insulin degradation? Diabetologia. 1984;26:441–4.

    Article  PubMed  CAS  Google Scholar 

  59. Bertelsen M, Anggard EE, Carrier MJ. Oxidative stress impairs insulin internalization in endothelial cells in vitro. Diabetologia. 2001;44:605–13.

    Article  PubMed  CAS  Google Scholar 

  60. Krawczyk M, Bonfrate L, Portincasa P. Nonalcoholic fatty liver disease. Best Pract Res Clin Gastroenterol. 2010;24:695–708.

    Article  PubMed  CAS  Google Scholar 

  61. Neuschwander-Tetri BA, Clark JM, Bass NM, et al. Clinical, laboratory and histological associations in adults with nonalcoholic fatty liver disease. Hepatology. 2010;52:913–24.

    Article  PubMed  CAS  Google Scholar 

  62. Nelson JE, Kowdley KV. Reply to Manco et al: The wide spectrum of hepatic iron overload. Hepatology. 2011;53:1057–8.

    Article  Google Scholar 

  63. Mitsuyoshi H, Yasui K, Harano Y, et al. Analysis of hepatic genes involved in the metabolism of fatty acids and iron in nonalcoholic fatty liver disease. Hepatol Res. 2009;39:366–73.

    Article  PubMed  CAS  Google Scholar 

  64. Graham RM, Chua AC, Carter KW, et al. Hepatic iron loading in mice increases cholesterol biosynthesis. Hepatology. 2010;52:462–71.

    Article  PubMed  CAS  Google Scholar 

  65. Petrak J, Myslivcova D, Man P, et al. Proteomic analysis of hepatic iron overload in mice suggests dysregulation of urea cycle, impairment of fatty acid oxidation, and changes in the methylation cycle. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1490–8.

    Article  PubMed  CAS  Google Scholar 

  66. Kirsch R, Sijtsema HP, Tlali M, et al. Effects of iron overload in a rat nutritional model of non-alcoholic fatty liver disease. Liver Int. 2006;26:1258–67.

    Article  PubMed  CAS  Google Scholar 

  67. Silva M, Silva ME, de Paula H, et al. Iron overload alters glucose homeostasis, causes liver steatosis, and increases serum triacylglycerols in rats. Nutr Res. 2008;28:391–8.

    Article  PubMed  CAS  Google Scholar 

  68. Hevi S, Chuck SL. Ferritins can regulate the secretion of apolipoprotein B. J Biol Chem. 2003;278:31924–9.

    Article  PubMed  CAS  Google Scholar 

  69. Bonkovsky HL, Lambrecht RW, Shan Y. Iron as a co-morbid factor in nonhemochromatotic liver disease. Alcohol. 2003;30:137–44.

    Article  PubMed  CAS  Google Scholar 

  70. Fargion S, Valenti L, Fracanzani AL. Beyond hereditary hemochromatosis: new insights into the relationship between iron overload and chronic liver diseases. Dig Liver Dis. 2011;43:89–95.

    Article  PubMed  Google Scholar 

  71. Bonkovsky HL, Jawaid Q, Tortorelli K, et al. Non-alcoholic steatohepatitis and iron: increased prevalence of mutations of the HFE gene in non-alcoholic steatohepatitis. J Hepatol. 1999;31:421–9.

    Article  PubMed  CAS  Google Scholar 

  72. Fargion S, Mattioli M, Fracanzani AL, et al. Hyperferritinemia, iron overload, and multiple metabolic alterations identify patients at risk for nonalcoholic steatohepatitis. Am J Gastroenterol. 2001;96:2448–55.

    Article  PubMed  CAS  Google Scholar 

  73. Nelson JE, Bhattacharya R, Lindor KD, et al. HFE C282Y mutations are associated with advanced hepatic fibrosis in Caucasians with nonalcoholic steatohepatitis. Hepatology. 2007;46:723–9.

    Article  PubMed  CAS  Google Scholar 

  74. Valenti L, Dongiovanni P, Fracanzani AL, et al. Increased susceptibility to nonalcoholic fatty liver disease in heterozygotes for the mutation responsible for hereditary hemochromatosis. Dig Liver Dis. 2003;35:172–8.

    Article  PubMed  CAS  Google Scholar 

  75. Deguti MM, Sipahi AM, Gayotto LC, et al. Lack of evidence for the pathogenic role of iron and HFE gene mutations in Brazilian patients with nonalcoholic steatohepatitis. Braz J Med Biol Res. 2003;36:739–45.

    Article  PubMed  CAS  Google Scholar 

  76. Yamauchi N, Itoh Y, Tanaka Y, et al. Clinical characteristics and prevalence of GB virus C, SEN virus, and HFE gene mutation in Japanese patients with nonalcoholic steatohepatitis. J Gastroenterol. 2004;39:654–60.

    Article  PubMed  CAS  Google Scholar 

  77. Yoneda M, Nozaki Y, Endo H, et al. Serum ferritin is a clinical biomarker in Japanese patients with nonalcoholic steatohepatitis (NASH) independent of HFE gene mutation. Dig Dis Sci. 2010;55:808–14.

    Article  PubMed  CAS  Google Scholar 

  78. Lin TJ, Lin CL, Wang CS, et al. Prevalence of HFE mutations and relation to serum iron status in patients with chronic hepatitis C and patients with nonalcoholic fatty liver disease in Taiwan. World J Gastroenterol. 2005;11:3905–8.

    PubMed  CAS  Google Scholar 

  79. Dhillon BK, Das R, Garewal G, et al. Frequency of primary iron overload and HFE gene mutations (C282Y, H63D and S65C) in chronic liver disease patients in north India. World J Gastroenterol. 2007;13:2956–9.

    PubMed  CAS  Google Scholar 

  80. Duseja A, Das R, Nanda M, et al. Nonalcoholic steatohepatitis in Asian Indians is neither associated with iron overload nor with HFE gene mutations. World J Gastroenterol. 2005;11:393–5.

    PubMed  Google Scholar 

  81. Lee SH, Jeong SH, Lee D, et al. An epidemiologic study on the incidence and significance of HFE mutations in a Korean cohort with nonalcoholic fatty liver disease. J Clin Gastroenterol. 2010;44:e154–61.

    Article  PubMed  Google Scholar 

  82. • Hernaez R, Yeung E, Clark JM, et al.: Hemochromatosis gene and nonalcoholic fatty liver disease: A systematic review and meta-analysis. J Hepatol 2011. A large meta-analysis of HFE genotyping studies in NAFLD. The authors conclude that HFE mutations are not more common among Caucasian patients with NAFLD than those without NAFLD.

  83. • Petrak J, Myslivcova D, Halada P, et al.: Iron-independent specific protein expression pattern in the liver of HFE-deficient mice. Int J Biochem Cell Biol 2007, 39:1006–1015. A novel study showing unique hepatic protein profiles in HFE-deficient mice compared to iron matched contol mice. The implications of this study are that HFE mutations may effect liver function independent of iron accumulation.

    Article  PubMed  CAS  Google Scholar 

  84. Wu Y, Fan Y, Xue B, et al. Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals. Oncogene. 2006;25:5787–800.

    Article  PubMed  CAS  Google Scholar 

  85. Redinbo MR, Bencharit S, Potter PM. Human carboxylesterase 1: from drug metabolism to drug discovery. Biochem Soc Trans. 2003;31:620–4.

    Article  PubMed  CAS  Google Scholar 

  86. Henkel C, Roderfeld M, Weiskirchen R, et al. Identification of fibrosis-relevant proteins using DIGE (difference in gel electrophoresis) in different models of hepatic fibrosis. Z Gastroenterol. 2005;43:23–9.

    Article  PubMed  CAS  Google Scholar 

  87. Chu R, Lim H, Brumfield L, et al. Protein profiling of mouse livers with peroxisome proliferator-activated receptor alpha activation. Mol Cell Biol. 2004;24:6288–97.

    Article  PubMed  CAS  Google Scholar 

  88. Kallwitz ER, McLachlan A, Cotler SJ. Role of peroxisome proliferators-activated receptors in the pathogenesis and treatment of nonalcoholic fatty liver disease. World J Gastroenterol. 2008;14:22–8.

    Article  PubMed  CAS  Google Scholar 

  89. Milet J, Dehais V, Bourgain C, et al. Common variants in the BMP2, BMP4, and HJV genes of the hepcidin regulation pathway modulate HFE hemochromatosis penetrance. Am J Hum Genet. 2007;81:799–807.

    Article  PubMed  CAS  Google Scholar 

  90. Pietrangelo A. The penetrance of hemochromatosis: mice to the rescue. Gastroenterology. 2007;132:805–8.

    Article  PubMed  CAS  Google Scholar 

  91. Facchini FS, Hua NW, Stoohs RA. Effect of iron depletion in carbohydrate-intolerant patients with clinical evidence of nonalcoholic fatty liver disease. Gastroenterology. 2002;122:931–9.

    Article  PubMed  CAS  Google Scholar 

  92. Valenti L, Fracanzani AL, Fargion S. Effect of iron depletion in patients with nonalcoholic fatty liver disease without carbohydrate intolerance. Gastroenterology. 2003;124:866–7.

    Article  PubMed  Google Scholar 

  93. Valenti L, Fracanzani AL, Dongiovanni P, et al. Iron depletion by phlebotomy improves insulin resistance in patients with nonalcoholic fatty liver disease and hyperferritinemia: evidence from a case–control study. Am J Gastroenterol. 2007;102:1251–8.

    Article  PubMed  CAS  Google Scholar 

  94. Sumida Y, Kanemasa K, Fukumoto K, et al. Effect of iron reduction by phlebotomy in Japanese patients with nonalcoholic steatohepatitis: A pilot study. Hepatol Res. 2006;36:315–21.

    Article  PubMed  CAS  Google Scholar 

  95. Valenti L, Moscatiello S, Vanni E, et al. Venesection for non-alcoholic fatty liver disease unresponsive to lifestyle counselling–a propensity score-adjusted observational study. QJM. 2011;104:141–9.

    Article  PubMed  CAS  Google Scholar 

  96. • Dongiovanni P, Valenti L, Ludovica FA, et al.: Iron depletion by deferoxamine up-regulates glucose uptake and insulin signaling in hepatoma cells and in rat liver. Am J Pathol 2008, 172:738–747. Another novel study providing evidence that iron effects glucose metabolism and insulin signaling and that these effects are mediated by HIF-1α.

    Article  PubMed  CAS  Google Scholar 

  97. Kaji K, Yoshiji H, Kitade M, et al. Combination treatment of angiotensin II type I receptor blocker and new oral iron chelator attenuates progression of nonalcoholic steatohepatitis in rats. Am J Physiol Gastrointest Liver Physiol. 2011;300:G1094–104.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris V. Kowdley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, J.E., Klintworth, H. & Kowdley, K.V. Iron Metabolism in Nonalcoholic Fatty Liver Disease. Curr Gastroenterol Rep 14, 8–16 (2012). https://doi.org/10.1007/s11894-011-0234-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-011-0234-4

Keywords

Navigation