Skip to main content
Log in

Lecithin Cholesterol Acyltransferase: An Anti- or Pro-atherogenic Factor?

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Lecithin cholesterol acyl transferase (LCAT) is a plasma enzyme that esterifies cholesterol and raises high-density lipoprotein cholesterol, but its role in atherosclerosis is not clearly established. Studies of various animal models have yielded conflicting results, but studies done in rabbits and non-human primates, which more closely simulate human lipoprotein metabolism, indicate that LCAT is likely atheroprotective. Although suggestive, there are also no biomarker studies that mechanistically link LCAT with cardiovascular disease. Imaging studies of patients with LCAT deficiency have also not yielded a clear answer to the role of LCAT in atherosclerosis. Recombinant LCAT, however, is currently being developed as a therapeutic product for enzyme replacement therapy of patients with genetic disorders of LCAT for the prevention and/or treatment of renal disease, but it may also have value for the treatment of acute coronary syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rousset X, Vaisman B, Amar M, Sethi AA, Remaley AT. Lecithin: cholesterol acyltransferase–from biochemistry to role in cardiovascular disease. Curr Opin Endocrinol Diabetes Obes. 2009;16(2):163–71.

    Article  PubMed  CAS  Google Scholar 

  2. Santamarina-Fojo S, Hoeg JM, Assmann G, H. Bryan Brewer J: Lecithin Cholesterol Acyltransferase Deficiency and Fish Eye Disease. In: Metabolic & Molecular Bases of Inherited Disease. 2001.

  3. Chang T-Y, Li B-L, Chang CCY, Urano Y. Acyl-coenzyme A: cholesterol acyltransferases. Am J Physiol Endocrinol Metab. 2009;297(1):E1–9.

    Article  PubMed  CAS  Google Scholar 

  4. Czarnecka H, Yokoyama S. Regulation of cellular cholesterol efflux by lecithin:cholesterol acyltransferase reaction through nonspecific lipid exchange. Journal of Biological Chemistry. 1996;271(4):2023–8.

    Article  PubMed  CAS  Google Scholar 

  5. Nofer JR, Remaley A. Tangier disease: still more questions than answers. Cellular and Molecular Life Sciences. 2005;62(19):2150–60.

    Article  PubMed  CAS  Google Scholar 

  6. Yvan-Charvet L, Kling J, Pagler T, et al. Cholesterol efflux potential and antiinflammatory properties of high-density lipoprotein after treatment with niacin or anacetrapib. Arterioscl Throm Vas. 2010;30(7):1430–U1405.

    Article  CAS  Google Scholar 

  7. Nishiwaki M, Ikewaki K, Bader G, et al. Human lecithin:cholesterol acyltransferase deficiency: in vivo kinetics of low-density lipoprotein and lipoprotein-X. Arterioscler Thromb Vasc Biol. 2006;26(6):1370–5.

    Article  PubMed  CAS  Google Scholar 

  8. Lynn EG, Choy PC, Magil A. O K: uptake and metabolism of lipoprotein-X in mesangial cells. Mol Cell Biochem. 1997;175(1–2):187–94.

    Article  PubMed  CAS  Google Scholar 

  9. Rader DJ. Lecithin: cholesterol acyltransferase and atherosclerosis: another high-density lipoprotein story that doesn’t quite follow the script. Circulation. 2009;120(7):549–52.

    Article  PubMed  Google Scholar 

  10. Greeve J, Altkemper I, Dieterich JH, Greten H, Windler E. Apolipoprotein B mRNA editing in 12 different mammalian species: hepatic expression is reflected in low concentrations of apoB-containing plasma lipoproteins. J Lipid Res. 1993;34(8):1367–83.

    PubMed  CAS  Google Scholar 

  11. Paigen B, Ishida BY, Verstuyft J, Winters RB, Albee D. Atherosclerosis susceptibility differences among progenitors of recombinant inbred strains of mice. Arteriosclerosis. 1990;10(2):316–23.

    PubMed  CAS  Google Scholar 

  12. Berard AM, Foger B, Remaley A, et al. High plasma HDL concentrations associated with enhanced atherosclerosis in transgenic mice overexpressing lecithin-cholesteryl acyltransferase. Nat Med. 1997;3(7):744–9.

    Article  PubMed  CAS  Google Scholar 

  13. Foger B, Chase M, Amar MJ, et al. Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice. J Biol Chem. 1999;274(52):36912–20.

    Article  PubMed  CAS  Google Scholar 

  14. Furbee Jr JW, Parks JS. Transgenic overexpression of human lecithin: cholesterol acyltransferase (LCAT) in mice does not increase aortic cholesterol deposition. Atherosclerosis. 2002;165(1):89–100.

    Article  PubMed  CAS  Google Scholar 

  15. Hoeg JM, Vaisman BL, Demosky Jr SJ, et al. Lecithin:cholesterol acyltransferase overexpression generates hyperalpha-lipoproteinemia and a nonatherogenic lipoprotein pattern in transgenic rabbits. J Biol Chem. 1996;271(8):4396–402.

    Article  PubMed  CAS  Google Scholar 

  16. Brousseau ME, Hoeg JM. Transgenic rabbits as models for atherosclerosis research. J Lipid Res. 1999;40(3):365–75.

    PubMed  CAS  Google Scholar 

  17. Brousseau ME, Santamarina-Fojo S, Vaisman BL, et al. Overexpression of human lecithin:cholesterol acyltransferase in cholesterol-fed rabbits: LDL metabolism and HDL metabolism are affected in a gene dose-dependent manner. J Lipid Res. 1997;38(12):2537–47.

    PubMed  CAS  Google Scholar 

  18. Sakai N, Vaisman BL, Koch CA, et al. Targeted disruption of the mouse lecithin:cholesterol acyltransferase (LCAT) gene. Generation of a new animal model for human LCAT deficiency. J Biol Chem. 1997;272(11):7506–10.

    Article  PubMed  CAS  Google Scholar 

  19. Lambert G, Sakai N, Vaisman BL, et al. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice. J Biol Chem. 2001;276(18):15090–8.

    Article  PubMed  CAS  Google Scholar 

  20. Ng DS, Maguire GF, Wylie J, et al. Oxidative stress is markedly elevated in lecithin:cholesterol acyltransferase-deficient mice and is paradoxically reversed in the apolipoprotein E knockout background in association with a reduction in atherosclerosis. J Biol Chem. 2002;277(14):11715–20.

    Article  PubMed  CAS  Google Scholar 

  21. Furbee Jr JW, Sawyer JK, Parks JS. Lecithin: cholesterol acyltransferase deficiency increases atherosclerosis in the low density lipoprotein receptor and apolipoprotein E knockout mice. J Biol Chem. 2002;277(5):3511–9.

    Article  PubMed  CAS  Google Scholar 

  22. Amar MJ, Shamburek RD, Vaisman B, et al. Adenoviral expression of human lecithin-cholesterol acyltransferase in nonhuman primates leads to an antiatherogenic lipoprotein phenotype by increasing high-density lipoprotein and lowering low-density lipoprotein. Metabolism. 2009;58(4):568–75.

    Article  PubMed  CAS  Google Scholar 

  23. Zhou M, Sawyer J, Kelley K, et al: Abstract 5920: Lecithin Cholesterol Acyltransferase Promotes Reverse Cholesterol Transport and Attenuates Atherosclerosis Progression in New Zealand White Rabbits. Circulation 2009, 120(18_MeetingAbstracts):S1175-b-.

    Google Scholar 

  24. Amar MJ, D'Souza W, Turner S, et al. 5A apolipoprotein mimetic peptide promotes cholesterol efflux and reduces atherosclerosis in mice. J Pharmacol Exp Ther. 2010;334(2):634–41.

    Article  PubMed  CAS  Google Scholar 

  25. Tanigawa H, Billheimer JT, Tohyama J, et al. Lecithin: cholesterol acyltransferase expression has minimal effects on macrophage reverse cholesterol transport in vivo. Circulation. 2009;120(2):160–9.

    Article  PubMed  CAS  Google Scholar 

  26. Wang X, Collins HL, Ranalletta M, et al. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest. 2007;117(8):2216–24.

    Article  PubMed  CAS  Google Scholar 

  27. •• Sethi AA, Sampson M, Warnick R, et al. High pre-beta1 HDL concentrations and low lecithin: cholesterol acyltransferase activities are strong positive risk markers for ischemic heart disease and independent of HDL-cholesterol. Clin Chem. 2010;56(7):1128–37. This work demonstrates that LCAT and pre-β are good biomarkers for cardiovascular disease.

    Article  PubMed  CAS  Google Scholar 

  28. Frohlich J, Dobiasova M. Fractional esterification rate of cholesterol and ratio of triglycerides to HDL-cholesterol are powerful predictors of positive findings on coronary angiography. Clin Chem. 2003;49(11):1873–80.

    Article  PubMed  CAS  Google Scholar 

  29. Dullaart RP, Perton F, Sluiter WJ, de Vries R, van Tol A. Plasma lecithin: cholesterol acyltransferase activity is elevated in metabolic syndrome and is an independent marker of increased carotid artery intima media thickness. J Clin Endocrinol Metab. 2008;93(12):4860–6.

    Article  PubMed  CAS  Google Scholar 

  30. Dullaart RP, Perton F, Kappelle PJ, de Vries R, Sluiter WJ, van Tol A. Plasma lecithin: cholesterol acyltransferase activity modifies the inverse relationship of C-reactive protein with HDL cholesterol in nondiabetic men. Biochim Biophys Acta. 2010;1801(1):84–8.

    PubMed  CAS  Google Scholar 

  31. Hovingh GK, Hutten BA, Holleboom AG, et al. Compromised LCAT function is associated with increased atherosclerosis. Circulation. 2005;112(6):879–84.

    Article  PubMed  CAS  Google Scholar 

  32. Holleboom AG, Duivenvoorden R, van den Bogaard B, et al: Carriers of Lcat Gene Mutations Have Increased Atherosclerosis: A 3.0 Tesla Mri Study. Atherosclerosis Supp 2010, 11(2):61-61.

    Google Scholar 

  33. Ayyobi AF, McGladdery SH, Chan S, John Mancini GB, Hill JS, Frohlich JJ. Lecithin: cholesterol acyltransferase (LCAT) deficiency and risk of vascular disease: 25 year follow-up. Atherosclerosis. 2004;177(2):361–6.

    Article  PubMed  CAS  Google Scholar 

  34. Calabresi L, Baldassarre D, Castelnuovo S, et al. Functional lecithin: cholesterol acyltransferase is not required for efficient atheroprotection in humans. Circulation. 2009;120(7):628–35.

    Article  PubMed  CAS  Google Scholar 

  35. Wells IC, Peitzmeier G, Vincent JK. Lecithin: cholesterol acyltransferase and lysolecithin in coronary atherosclerosis. Exp Mol Pathol. 1986;45(3):303–10.

    Article  PubMed  CAS  Google Scholar 

  36. • Rousset X, Vaisman B, Auerbach B, et al: Effect of Recombinant Human Lecithin-cholesterol:acyltransferase Infusion on Lipoprotein Metabolism in Mice. J Pharmacol Exp Ther 2010. This work demonstates the feasibility of LCAT replacement therapy in the case of LCAT deficiency.

  37. Brady RO. Enzyme replacement for lysosomal diseases. Annu Rev Med. 2006;57:283–96.

    Article  PubMed  CAS  Google Scholar 

  38. Norum KR, Gjone E. The effect of plasma transfusion on the plasma cholesterol esters in patients with familial plasma lecithin: cholesterol acyltransferase deficiency. Scand J Clin Lab Invest. 1968;22(4):339–42.

    Article  PubMed  CAS  Google Scholar 

  39. Murayama N, Asano Y, Kato K, et al. Effects of plasma infusion on plasma lipids, apoproteins and plasma enzyme activities in familial lecithin: cholesterol acyltransferase deficiency. Eur J Clin Invest. 1984;14(2):122–9.

    Article  PubMed  CAS  Google Scholar 

  40. Klein HG, Santamarina-Fojo S, Duverger N, et al. Fish eye syndrome: a molecular defect in the lecithin-cholesterol acyltransferase (LCAT) gene associated with normal alpha-LCAT-specific activity. Implications for classification and prognosis. The Journal of Clinical Investigation. 1993;92(1):479–85.

    Article  PubMed  CAS  Google Scholar 

  41. Asada S, Kuroda M, Aoyagi Y, et al: Disturbed apolipoprotein A-I-containing lipoproteins in fish-eye disease are improved by the lecithin:cholesterol acyltransferase produced by gene-transduced adipocytes in vitro. Molecular Genetics and Metabolism, In Press.

  42. • Kuroda M, Aoyagi Y, Asada S, et al: Ceiling culture-derived proliferative adipocytes are a possible delivery vehicle for enzyme replacement therapy in lecithin:cholesterol acyltransferase deficiency. Gene Ther Mol Biol. In press. This article presents an alternative to LCAT injections for a treatment of the human LCAT deficiency.

  43. Remaley AT, Amar M, Sviridov D. HDL-replacement therapy: mechanism of action, types of agents and potential clinical indications. Expert Rev Cardiovasc Ther. 2008;6(9):1203–15.

    Article  PubMed  CAS  Google Scholar 

  44. Sethi AA, Amar M, Shamburek RD, Remaley AT. Apolipoprotein AI mimetic peptides: possible new agents for the treatment of atherosclerosis. Curr Opin Investig Drugs. 2007;8(3):201–12.

    PubMed  CAS  Google Scholar 

  45. • Yvan-Charvet L, Pagler T, Gautier EL, et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science. 2010;328(5986):1689–93. This article presents new data on the interaction of HDL metabolism and blood cells.

    Article  PubMed  CAS  Google Scholar 

  46. Tardif JC, Heinonen T, Noble S. High-density lipoprotein/apolipoprotein A-I infusion therapy. Curr Atheroscler Rep. 2009;11(1):58–63.

    Article  PubMed  CAS  Google Scholar 

  47. Feister HA, Auerbach BJ, Cole LA, Krause BR, Karathanasis SK. Identification of an IL-6 response element in the human LCAT promoter. Journal of Lipid Research. 2002;43(6):960–70.

    PubMed  CAS  Google Scholar 

  48. Zhou M, Fordstrom P, Zhang J, et al. Novel small molecule LCAT activators raise HDL levels in rodent models. Arterioscl Throm Vas. 2008;28(6):E65–6.

    Google Scholar 

  49. Vaisman BL, Klein HG, Rouis M, et al. Overexpression of human lecithin cholesterol acyltransferase leads to hyperalphalipoproteinemia in transgenic mice. J Biol Chem. 1995;270(20):12269–75.

    Article  PubMed  CAS  Google Scholar 

  50. Mehlum A, Staels B, Duverger N, et al. Tissue-specific expression of the human gene for lecithin: cholesterol acyltransferase in transgenic mice alters blood lipids, lipoproteins and lipases towards a less atherogenic profile. Eur J Biochem. 1995;230(2):567–75.

    Article  PubMed  CAS  Google Scholar 

  51. Van Craeyveld E, Lievens J, Jacobs F, Feng Y, Snoeys J, De Geest B. Apolipoprotein A-I and lecithin: cholesterol acyltransferase transfer induce cholesterol unloading in complex atherosclerotic lesions. Gene Ther. 2009;16(6):757–65.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

All authors were supported by intramural NHLBI funds from the National Institutes of Health.

Disclosure

The authors report not potential conflicts of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Rousset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rousset, X., Shamburek, R., Vaisman, B. et al. Lecithin Cholesterol Acyltransferase: An Anti- or Pro-atherogenic Factor?. Curr Atheroscler Rep 13, 249–256 (2011). https://doi.org/10.1007/s11883-011-0171-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-011-0171-6

Keywords

Navigation