Skip to main content

Advertisement

Log in

Connective tissue growth factor (CTGF) and cancer progression

  • Review
  • Published:
Journal of Biomedical Science

Abstract

Connective tissue growth factor (CTGF) is a member of the CCN family of secreted, matrix-associated proteins encoded by immediate early genes that play various roles in angiogenesis and tumor growth. CCN family proteins share uniform modular structure which mediates various cellular functions such as regulation of cell division, chemotaxis, apoptosis, adhesion, motility, angiogenesis, neoplastic transformation, and ion transport. Recently, CTGF expression has been shown to be associated with tumor development and progression. There is growing body of evidence that CTGF may regulate cancer cell migration, invasion, angiogenesis, and anoikis. In this review, we will highlight the influence of CTGF expression on the biological behavior and progression of various cancer cells, as well as its regulation on various types of protein signals and their mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bradham DM, Igarashi A, Potter RL, Grotendorst GR (1991) Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol 114:1285–1294

    Article  PubMed  CAS  Google Scholar 

  2. Brigstock DR (1999) The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev 20:189–206

    Google Scholar 

  3. Lau LF, Lam SC (1999) The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res 248:44–57

    Article  PubMed  CAS  Google Scholar 

  4. Perbal B (2001) The CCN family of genes: a brief history. Mol Pathol 54:103–104

    Article  PubMed  CAS  Google Scholar 

  5. Perbal B (2001) NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues. Mol Pathol 54:57–79

    Article  PubMed  CAS  Google Scholar 

  6. Bork P (1993) The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett 327:125–130

    Article  PubMed  CAS  Google Scholar 

  7. Ristimaki A, Honkanen N, Jankala H, Sipponen P, Harkonen M (1997) Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer Res 57:1276–1280

    PubMed  CAS  Google Scholar 

  8. Thun MJ, Namboodiri MM, Calle EE, Flanders WD, Heath CW Jr (1993) Aspirin use and risk of fatal cancer. Cancer Res 53:1322–1327

    PubMed  CAS  Google Scholar 

  9. Uefuji K, Ichikura T, Mochizuki H (2001) Expression of cyclooxygenase-2 in human gastric adenomas and adenocarcinomas. J Surg Oncol 76:26–30

    Article  PubMed  CAS  Google Scholar 

  10. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  PubMed  CAS  Google Scholar 

  11. Pan LH, Beppu T, Kurose A, Yamauchi K, Sugawara A, Suzuki M, Ogawa A, Sawai T (2002) Neoplastic cells and proliferating endothelial cells express connective tissue growth factor (CTGF) in glioblastoma. Neurol Res 24:677–683

    Article  PubMed  CAS  Google Scholar 

  12. Koliopanos A, Friess H, di Mola FF, Tang WH, Kubulus D, Brigstock D, Zimmermann A, Buchler MW (2002) Connective tissue growth factor gene expression alters tumor progression in esophageal cancer. World J Surg 26:420–427

    Article  PubMed  Google Scholar 

  13. Wenger C, Ellenrieder V, Alber B, Lacher U, Menke A, Hameister H, Wilda M, Iwamura T, Beger HG, Adler G, Gress TM (1999) Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene 18:1073–1080

    Article  PubMed  CAS  Google Scholar 

  14. Kubo M, Kikuchi K, Nashiro K, Kakinuma T, Hayashi N, Nanko H, Tamaki K (1998) Expression of fibrogenic cytokines in desmoplastic malignant melanoma. Br J Dermatol 139:192–197

    Article  PubMed  CAS  Google Scholar 

  15. Shakunaga T, Ozaki T, Ohara N, Asaumi K, Doi T, Nishida K, Kawai A, Nakanishi T, Takigawa M, Inoue H (2000) Expression of connective tissue growth factor in cartilaginous tumors. Cancer 89:1466–1473

    Article  PubMed  CAS  Google Scholar 

  16. Moritani NH, Kubota S, Nishida T, Kawaki H, Kondo S, Sugahara T, Takigawa M (2003) Suppressive effect of overexpressed connective tissue growth factor on tumor cell growth in a human oral squamous cell carcinoma-derived cell line. Cancer Lett 192:205–214

    Article  PubMed  CAS  Google Scholar 

  17. Planque N, Perbal B (2003) A structural approach to the role of CCN (CYR61/CTGF/NOV) proteins in tumourigenesis. Cancer Cell Int 3:15

    Article  PubMed  Google Scholar 

  18. Ball DK, Rachfal AW, Kemper SA, Brigstock D (2003) The heparinbinging 10 kDa fragment of connective tissue growth factor (CTGF) containing module 4 alone stimulates cell adhesion. J Endocrinol 176:R1–R7

    Article  PubMed  CAS  Google Scholar 

  19. Takigawa M (2003) CTGF/Hcs24 as a multifunctional growth factor for fibroblasts, chondrocytes and vascular endothelial cells. Drug News Perspect 16:11–21

    Article  PubMed  CAS  Google Scholar 

  20. Ihn H (2002) Pathogenesis of fibrosis: role of TGF-β and CTGF. Curr Opin Rheumatol 14:681–695

    Article  PubMed  CAS  Google Scholar 

  21. Chen Y, Segarini P, Raoufi F, Bradham D, Leask A (2001) Connective tissue growth factor is secreted through the Golgi and is degraded in the endosome. Exp Cell Res 271:109–117

    Article  PubMed  CAS  Google Scholar 

  22. Leask A, Abraham DJ (2003) The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem Cell Biol 81:355–363

    Article  PubMed  CAS  Google Scholar 

  23. Chen CC, Chen N, Lau LF (2001) The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem 276:10443–10452

    Google Scholar 

  24. Brigstock DR, Steffen CL, Kim GY, Vegunta RK, Diehl JR, Harding PA (1997) Purification and characterization of novel heparin-binding growth factors in uterine secretory fluids. Identification as heparin-regulated Mr 10,000 forms of connective tissue growth factor. J Biol Chem 272:20275–20282

    Google Scholar 

  25. Frazier K, Williams S, Kothapalli D, Klapper H, Grotendorst GR (1996) Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol 107:404–411

    Article  PubMed  CAS  Google Scholar 

  26. Shimo T, Nakanishi T, Nishida T, Asano M, Kanyama M, Kuboki T, Tamatani T, Tezuka K, Takemura M, Matsumura T, Takigawa M (1999) Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro and angiogenesis in vivo. J Biochem 126:137–145 (Tokyo)

    PubMed  CAS  Google Scholar 

  27. Babic AM, Chen CC, Lau LF (1999) Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol 19:2958–2966

    PubMed  CAS  Google Scholar 

  28. Nakanishi T, Nishida Y, Shimo T, Kobayashi K, Kubo T, Tamatani T (2000) Effects of CTGF/Hcs24, a product of a hypertropic chondrocyte-specific gene, on the proliferation and differentiation of chondrocytes in culture. Endocrinology 141:264–273

    Article  PubMed  CAS  Google Scholar 

  29. Yosimichi G, Nakanishi T, Nishida T, Hattori T, Takano-Yamamoto T, Takigawa M (2001) CTGF/Hcs24 induces chondrocyte differentiation through a p38 mitogen-activated protein kinase (p38MAPK), and proliferation through a p44/42 MAPK/extracellular-signal regulated kinase (ERK). Eur J Biochem 268:6058–6065

    Article  PubMed  CAS  Google Scholar 

  30. Vorwerk P, Wex H, Hohmann B, Oh Y, Rosenfeld RG, Mittler U (2000) CTGF (IGFBP-rP2) is specifically expressed in malignant lymphoblasts of patients with acute lymphoblastic leukaemia (ALL). Br J Cancer 83:756–760

    Article  PubMed  CAS  Google Scholar 

  31. Sala-Torra O, Gundacker HM, Stirewalt DL, Ladne PA, Pogosova-Agadjanyan EL, Slovak ML, Willman CL, Heimfeld S, Boldt DH, Radich JP (2007) Connective tissue growth factor (CTGF) expression and outcome in adult patients with acute lymphoblastic leukemia. Blood 109:3080–3083

    PubMed  CAS  Google Scholar 

  32. Frazier K, Grotendorst G (1997) Expression of connective tissue growth factor mRNA in the fibrous stroma of mammary tumors. Int J Biochem Cell Biol 29:153–161

    Article  PubMed  CAS  Google Scholar 

  33. Hishikawa K, Oemar BS, Tanner FC, Nakaki T, Luscher TF, Fujii T (1999) Connective tissue growth factor induces apoptosis in human breast cancer cell line MCF-7. J Biol Chem 274:37461–37466

    Article  PubMed  CAS  Google Scholar 

  34. Xie D, Nakachi K, Wang H, Elashoff R, Koeffler HP (2001) Elevated levels of connective tissue growth factor, WISP–1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res 61:8917–8923

    PubMed  CAS  Google Scholar 

  35. Shimo T, Kubota S, Kondo S, Nakanishi T, Sasaki A, Mese H, Matsumura T, Takigawa M (2001) Connective tissue growth factor as a major angiogenic agent that is induced by hypoxia in a human breast cancer cell line. Cancer Lett 174:57–64

    Article  PubMed  CAS  Google Scholar 

  36. Shimo T, Nakanishi T, Nishida T, Asano M, Sasaki A, Kanyama M, Kuboki T, Matsumura T, Takigawa M (2001) Involvement of CTGF, a hypertrophic chondrocyte-specific gene product, in tumor angiogenesis. Oncology 61:315–322

    Article  PubMed  CAS  Google Scholar 

  37. Kondo S, Kubota S, Shimo T, Nishida T, Yosimichi G, Eguchi T, Sugahara T, Takigawa M (2002) Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases. Carcinogenesis 23:769–776

    Article  PubMed  CAS  Google Scholar 

  38. Jiang WG, Watkins G, Fodstad O, Douglas-Jones A, Mokbel K, Mansel RE (2004) Differential expression of the CCN family members Cyr61, CTGF and Nov in human breast cancer. Endocr Relat Cancer 11:781–791

    Article  PubMed  CAS  Google Scholar 

  39. Shimo T, Kubota S, Yoshioka N, Ibaragi S, Isowa S, Eguchi T, Sasaki A, Takigawa M (2006) Pathogenic role of connective tissue growth factor (CTGF/CCN2) in osteolytic metastasis of breast cancer. J Bone Miner Res 21:1045–1059

    Article  PubMed  CAS  Google Scholar 

  40. Chen PS, Wang MY, Wu SN, Su JL, Hong CC, Chuang SE, Chen MW, Hua KT, Wu YL, Cha ST, Babu MS, Chen CN, Lee PH, Chang KJ, Kuo ML (2007) CTGF enhances the motility of breast cancer cells via an integrin-αvβ3-ERK1/2-dependent S100A4-upregulated pathway. J Cell Sci 120:2053–2065

    Article  PubMed  CAS  Google Scholar 

  41. Wong YF, Cheung TH, Tsao GS, Lo KW, Yim SF, Wang VW, Heung MM, Chan SC, Chan LK, Ho TW, Wong KW, Li C, Guo Y, Chung TK, Smith DI (2006) Genome-wide gene expression profiling of cervical cancer in Hong Kong women by oligonucleotide microarray. Int J Cancer 118:2461–2469

    Article  PubMed  CAS  Google Scholar 

  42. Igarashi A, Hayashi N, Nashiro K, Takehara K (1998) Differential expression of connective tissue growth factor gene in cutaneous fibrohistiocytic and vascular tumors. J Cutan Pathol 25:143–148

    Article  PubMed  CAS  Google Scholar 

  43. Liu L, Li Z, Feng G, You W, Li J (2007) Expression of connective tissue growth factor is in agreement with the expression of VEGF, VEGF-C, -D and associated with shorter survival in gastric cancer. Pathol Int 57:712–718

    Article  PubMed  CAS  Google Scholar 

  44. Xie D, Yin D, Wang HJ, Liu GT, Elashoff R, Black K, Koeffler HP (2004) Levels of expression of CYR61 and CTGF are prognostic for tumor progression and survival of individuals with gliomas. Clin Cancer Res 10:2072–2081

    Article  PubMed  CAS  Google Scholar 

  45. Zeng ZJ, Yang LY, Ding X, Wang W (2004) Expressions of cysteine-rich61, connective tissue growth factor and Nov genes in hepatocellular carcinoma and their clinical significance. World J Gastroenterol 10:3414–3418

    PubMed  CAS  Google Scholar 

  46. Li Y, Lu Y, Ceng Y, Yang X (2007) Expression of connective tissue growth factor (CTGF), osteopontin (OPN) and clinical significances in the laryngeal squamous cell carcinoma tissues. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 21:121–123

    PubMed  Google Scholar 

  47. Chang CC, Shih JY, Jeng YM, Su JL, Lin BZ, Chen ST, Chau YP, Yang PC, Kuo ML (2004) Connective tissue growth factor and it’s role in lung adenocarcinoma invasion and metastasis. J Natl Cancer Inst 96:364–375

    Article  PubMed  CAS  Google Scholar 

  48. Chien W, Yin D, Gui D, Mori A, Frank JM, Said J, Kusuanco D, Marchevsky A, McKenna R, Koeffler HP (2006) Suppression of cell proliferation and signaling transduction by connective tissue growth factor in non-small cell lung cancer cells. Mol Cancer Res 4:591–598

    Article  PubMed  CAS  Google Scholar 

  49. Chen PP, Li WJ, Wang Y, Zhao S, Li DY, Feng LY, Shi XL, Koeffler HP, Tong XJ, Xie D (2007) Expression of Cyr61, CTGF, and WISP-1 correlates with clinical features of lung cancer. PLoS ONE 2:e534

  50. Chang CC, Lin MT, Lin BR, Jeng YM, Chen ST, Chu CY, Chen RJ, Chang KJ, Yang PC, Kuo ML (2006) Effects of connective tissue factor on hypoxia-inducible factor 1 degradation and tumor angiogenesis. J Natl Cancer Inst 98:984–995

    PubMed  CAS  Google Scholar 

  51. Kasaragod AB, Lucia MS, Cabirac G, Grotendorst GR, Stenmark KR (2001) Connective tissue growth factor expression in pediatric myofibroblastic tumors. Pediatr Dev Pathol 4:37–45

    Article  PubMed  CAS  Google Scholar 

  52. Kikuchi R, Tsuda H, Kanai Y, Kasamatsu T, Sengoku K, Hirohashi S, Inazawa J, Imoto I (2007) Promoter hypermethylation contributes to frequent inactivation of a putative conditional tumor suppressor gene connective tissue growth factor in ovarian cancer. Cancer Res 67:7095–7105

    Article  PubMed  CAS  Google Scholar 

  53. Hartel M, Di Mola FF, Gardini A, Zimmermann A, Di Sebastiano P, Guweidhi A, Innocenti P, Giese T, Giese N, Buchler MW, Friess H (2004) Desmoplastic reaction influences pancreatic cancer growth behavior. World J Surg 28:818–825

    Article  PubMed  Google Scholar 

  54. Aikawa T, Gunn J, Spong SM, Klaus SJ, Korc M (2006) Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol Cancer Ther 5:1108–1116

    Article  PubMed  CAS  Google Scholar 

  55. Dornhofer N, Spong S, Bennewith K, Salim A, Klaus S, Kambham N, Wong C, Kaper F, Sutphin P, Nacamuli R, Hockel M, Le Q, Longaker M, Yang G, Koong A, Giaccia A (2006) Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Res 66:5816–5827

    Article  PubMed  Google Scholar 

  56. Kwon S, Munroe X, Crawley SC, Lee HY, Spong S, Bradham D, Gum JR Jr, Sleisenger MH, Kim YS (2007) Expression of connective tissue growth factor in pancreatic cancer cell lines. Int J Oncol 31:693–703

    PubMed  CAS  Google Scholar 

  57. Yang F, Tuxhorn JA, Ressler SJ, McAlhany SJ, Dang TD, Rowley DR (2005) Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res 65:8887–8895

    Article  PubMed  CAS  Google Scholar 

  58. Croci S, Landuzzi L, Astolfi A, Nicoletti G, Rosolen A, Sartori F, Follo MY, Oliver N, De Giovanni C, Nanni P, Lollini PL (2004) Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells. Cancer Res 64:1730–1736

    Article  PubMed  CAS  Google Scholar 

  59. Stanhope-Baker P, Williams BR (2000) Identification of connective tissue growth factor as a target of WT1 transcriptional regulation. J Biol Chem 275:38139–38150

    Article  PubMed  CAS  Google Scholar 

  60. Zirn B, Samans B, Spangenberg C, Graf N, Eilers M, Gessler M (2005) All-trans retinoic acid treatment of Wilms tumor cells reverses expression of genes associated with high risk and relapse in vivo. Oncogene 24:5246–5251

    Article  PubMed  CAS  Google Scholar 

  61. Zirn B, Hartmann O, Samans B, Krause M, Wittmann S, Mertens F, Graf N, Eilers M, Gessler M (2006) Expression profiling of Wilms tumors reveals new candidate genes for different clinical parameters. Int J Cancer 118:1954–1962

    Article  PubMed  CAS  Google Scholar 

  62. Olbryt M, Jarzab M, Jazowiecka-Rakus J, Simek K, Szala S, Sochanik A (2006) Gene expression profile of B 16(F10) murine melanoma cells exposed to hypoxic conditions in vitro. Gene Expr 13:191–203

    Article  PubMed  CAS  Google Scholar 

  63. Lin BR, Chang CC, Che TF, Chen ST, Chen RJ, Yang CY, Jeng YM, Liang JT, Lee PH, Chang KJ, Chau YP, Kuo ML (2005) Connective tissue growth factor inhibits metastasis and acts as an independent prognostic marker in colorectal cancer. Gastroentrology 128:9–23

    Article  CAS  Google Scholar 

  64. Liotta LA, Rao CN, Wewer UM (1986) Biochemical interactions of tumor cells with the basement membrane. Annu Rev Biochem 5:1037–1057

    Article  Google Scholar 

  65. Kramer RH, Bensch KG, Wong J (1986) Invasion of reconstituted basement membrane matrix by metastatic human tumor cells. Cancer Res 46:1980–1986

    PubMed  CAS  Google Scholar 

  66. Terranova VP, Hujanen ES, Loeb DM, Martin GR, Thornberg L, Glushko V (1986) Use of a reconstituted basement membrane to measure cell invasiveness and select for highly invasive tumor cells. Proc Natl Acad Sci USA 83:465–469

    Article  PubMed  CAS  Google Scholar 

  67. Albini AY, Iwamoto HK, Kleinman GR, Aaronson A, Kozlowski JM, McEwan RN (1987) A rapid in vitro assay for quantitating the invasive potential of high and low metastatic variants. Cancer Lett 38:137–147

    Article  Google Scholar 

  68. Hendrix MJC, Seftor EA, Seftor REB, Fidler IJ (1987) A simple quantitative assay for studying the invasive potential of high and low metastatic variants. Cancer Lett 38:137–147

    Article  PubMed  CAS  Google Scholar 

  69. Stracke ML, Liotta LA (1953) Molecular mechanisms of tumor cell metastasis. In: Mendelson T, Howley P, Israel MA, Liotta LA (eds) The molecular basis of cancer. W. B. Saunders, Philadelphia, pp 233–250

    Google Scholar 

  70. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function and biochemistry. Circ Res 92:827–839

    Article  PubMed  CAS  Google Scholar 

  71. Sleeman JP (2000) The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res 157:55–81

    PubMed  CAS  Google Scholar 

  72. Pepper MS (2001) Lymphogiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 7:462–468

    PubMed  CAS  Google Scholar 

  73. Vander Griend DJ, Berger JC, Rinker-Schaeffer CW (2004) Suppression of metastasis—a new function for known proteins. J Natl Cancer Inst 96:344–345

    PubMed  Google Scholar 

  74. Yoshida BA, Sokoloff MM, Welch DR, Rinker-Schaeffer CW (2000) Metastasis suppressor genes: a review and perspective on an emerging field. J Natl Cancer Inst 92:1717–1730

    Article  PubMed  CAS  Google Scholar 

  75. Fidler IJ (1991) Cancer metastasis. Br Med Bull 47:157–177

    PubMed  CAS  Google Scholar 

  76. Vander Griend DJ, Rinker-Schaeffer CW (2004) A new look at an old problem: the survival and organ-specific growth of metastases. Science’s STKE 2004:pe3

  77. Kirfel G, Rigort A, Borm B, Herzog V (2004) Cell migration: mechanisms of rear detachment and the formation of migration tracks. Eur J Cell Biol 83:717–724

    Article  PubMed  Google Scholar 

  78. Kim EJ, Helfman DM (2003) Characterization of the metastasis-associated protein, S100A4 Roles of calcium binding and dimerization in cellular localization and interaction with myosin. J Biol Chem 278:30063–30073

    Article  PubMed  CAS  Google Scholar 

  79. Turner CE (2000) Paxillin interactions. J Cell Sci 23:4139–4140

    Google Scholar 

  80. Brunton VG, MacPherson IR, Frame MC (2004) Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. Biochim Biophys Acta 1692:121–144

    PubMed  CAS  Google Scholar 

  81. Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, Ponomarev V, Gerald WL, Blasberg R, Massague J (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115:44–55

    PubMed  CAS  Google Scholar 

  82. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  83. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  PubMed  CAS  Google Scholar 

  84. Bergers G, Benjamin LE (2003) Angiogenesis: tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  85. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  86. Fukumura D, Xavier R, Sugiura T (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94:715–725

    Article  PubMed  CAS  Google Scholar 

  87. Yuan A, Yu CJ, Shun CT, Luh KT, Kuo SH, Lee YC, Yang PC (2005) Total cyclooxygenase-2 mRNA levels correlate with vascular endothelial growth factor mRNA levels, tumor angiogenesis and prognosis in non-small cell lung cancer patients. Int J Cancer 115:545–555

    Article  PubMed  CAS  Google Scholar 

  88. Kerbel RS (2000) Tumor angiogenesis: past, present and the near future. Carcinogenesis 21:505–515

    Article  PubMed  CAS  Google Scholar 

  89. Ferrara N (2002) Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 29:10–14

    PubMed  CAS  Google Scholar 

  90. Forsythe J, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613

    PubMed  CAS  Google Scholar 

  91. Semenza GL (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8:S62–S67

    Article  PubMed  CAS  Google Scholar 

  92. Yamamoto S, Yasui W, Kitadai Y, Yokozaki H, Haruma K, Kajiyama G, Tahara E (1998) Expression of vascular endothelial growth factor in human gastric carcinomas. Pathol Int 48:499–506

    Article  PubMed  CAS  Google Scholar 

  93. Saito H, Tsujitani S, Kondo A, Ikeguchi M, Maeta M, Kaibara N (1999) Expression of vascular endothelial growth factor correlates with hematogenous recurrence in gastric carcinoma. Surgery 125:195–201

    PubMed  CAS  Google Scholar 

  94. Kido S, Kitadai Y, Hattori N, Haruma K, Kido T, Ohta M, Tanaka S, Yoshihara M, Sumii K, Ohmoto Y, Chayama K (2001) Interleukin 8 and vascular endothelial growth factor—prognostic factors in human gastric carcinomas? Eur J Cancer 37:1482–1487

    Article  PubMed  CAS  Google Scholar 

  95. Cascinu S, Staccioli MP, Gasparini G, Giordani P, Catalano V, Ghiselli R, Rossi C, Baldelli AM, Graziano F, Saba V, Muretto P, Catalano G (2000) Expression of vascular endothelial growth factor can predict event-free survival in stage II colon cancer. Clin Cancer Res 6:2803–2807

    PubMed  CAS  Google Scholar 

  96. Berra E, Pagès G, Pouysségur J (2000) MAP kinases and hypoxia in the control of VEGF expression. Cancer Metastasis Rev 19:139–145

    Article  PubMed  CAS  Google Scholar 

  97. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    Article  PubMed  CAS  Google Scholar 

  98. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim AV, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    Article  PubMed  CAS  Google Scholar 

  99. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIF-1 alpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468

    Article  PubMed  CAS  Google Scholar 

  100. Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J 20:5197–5206

    Article  PubMed  CAS  Google Scholar 

  101. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  PubMed  CAS  Google Scholar 

  102. Fukuda R, Hirota K, Fan F, Jung YD, Ellis LM, Semenza GL (2002) Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP-kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem 277:38205–38211

    Article  PubMed  CAS  Google Scholar 

  103. Fukuda R, Kelly B, Semenza GL (2003) Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Res 63:2330–2334

    PubMed  CAS  Google Scholar 

  104. Hellwig-Bürgel T, Stiehl DP, Jelkmann W (2003) Hypoxia-inducible factor-1: more than a hypoxia-inducible transcription factor. In: Lahiri S, Semenza G, Prabhakar MR (eds) Oxygen sensing: responses and adaptation to hypoxia (Lung biology in health and disease). Marcel Dekker, New York, pp 95–108

    Google Scholar 

  105. Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL (2001) HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1 (HIF-1) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21:3995–4004

    Article  PubMed  CAS  Google Scholar 

  106. Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, Simons JW, Semenza GL (2000) Modulation of hypoxia-inducible factor-1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60:1541–1545

    PubMed  CAS  Google Scholar 

  107. Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, Stokoe D, Giaccia AJ (2000) Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14:391–396

    PubMed  CAS  Google Scholar 

  108. Latinkic BV, O’Brien TP, Lau LF (1991) Promoter function and structure of the growth factor-inducible immediate early gene cyr61. Nucleic Acids Res 19:3261–3267

    Article  PubMed  CAS  Google Scholar 

  109. Grotendorst GR (1997) Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev 8:171–179

    Article  PubMed  CAS  Google Scholar 

  110. Moussad EE, Brigstock DR (2000) Connective tissue growth factor: what’s in a name? Mol Genet Metab 71:276–292

    Article  PubMed  CAS  Google Scholar 

  111. Inoki I, Shiomi T, Hashimoto G, Enomoto H, Nakamura H, Makino K, Ikeda E, Takata S, Kobayashi K, Okada Y (2002) Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J 16:219–221

    PubMed  CAS  Google Scholar 

  112. Hashimoto G, Inoki I, Fujii Y, Aoki T, Ikeda E, Okada Y (2002) Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem 277:36288–36295

    Article  PubMed  CAS  Google Scholar 

  113. Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, Pauly RR, Grant DS, Martin GR (1992) A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest 67:519–528

    PubMed  CAS  Google Scholar 

  114. Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH, Yoo MA, Song EJ, Lee KJ, Kim KW (2002) Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 111:709–720

    Article  PubMed  CAS  Google Scholar 

  115. Nishida T, Kubota S, Nakanishi T, Kuboki T, Yosimichi G, Kondo S (2002) CTGF/Hcs24, a hypertrophic chondrocyte-specific gene product, stimulates proliferation and differentiation, but not hypertrophy of cultured articular chondrocytes. J Cell Physiol 192:55–63

    Article  PubMed  CAS  Google Scholar 

  116. Grossmann J (2002) Molecular mechanisms of detachment-induced apoptosis–Anoikis. Apoptosis 7:247–260

    Article  PubMed  CAS  Google Scholar 

  117. Wei L, Yang Y, Zhang X, Yu Q (2004) Altered regulation of Src upon cell detachment protects human lung adenocarcinoma cells from anoikis. Oncogene 23:9052–9061

    Article  PubMed  CAS  Google Scholar 

  118. Wei L, Yang Y, Yu Q (2001) Tyrosine kinase-dependent, phosphatidylinositol 3’-kinase, and mitogen-activated protein kinase-independent signaling pathways prevent lung adenocarcinoma cells from anoikis. Cancer Res 61:2439–2444

    PubMed  CAS  Google Scholar 

  119. Kodama K, Ishii G, Miyamoto S, Goya M, Zhang S, Sangai T, Yoshikawa T, Hasebe T, Hitomi Y, Izumi K, Ochiai A (2005) Laminin 5 expression protects against anoikis at aerogenous spread and lepidic growth of human lung adenocarcinoma. Int J Cancer 116:876–884

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Liang Kuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, CY., Chang, CC., Prakash, E. et al. Connective tissue growth factor (CTGF) and cancer progression. J Biomed Sci 15, 675–685 (2008). https://doi.org/10.1007/s11373-008-9264-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-008-9264-9

Keywords

Navigation