Skip to main content

Advertisement

Log in

Identification of the Promoter of Human Carbonyl Reductase 3 (CBR3) and Impact of Common Promoter Polymorphisms on Hepatic CBR3 mRNA Expression

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Recent studies suggest that polymorphisms in human carbonyl reductase 3 (CBR3) influence the pharmacodynamics of doxorubicin. First, we sought to identify the promoter of CBR3. Next, we examined whether two CBR3 promoter polymorphisms (CBR3 -725T>C and CBR3 -326T>A) dictate promoter activity and hepatic CBR3 mRNA levels.

Methods

The promoter activities of CBR3 reporter constructs were investigated in HepG2 and MCF-7 cells. CBR3 mRNA levels were documented in 95 liver samples from white (n = 62) and black (n = 33) donors. Genotype-phenotype correlation analyses were used to determine the impact of the CBR3 -725T>C and CBR3 -326T>A polymorphisms on hepatic CBR3 mRNA levels.

Results

We identified the promoter of human CBR3. Liver samples from black donors showed higher relative CBR3 mRNA levels than samples from whites (CBR3 mRNAblacks = 3.0 ± 3.1 relative fold vs. CBR3 mRNAwhites = 1.6 ± 1.5 relative fold, p = 0.021). The variant -725C and -326A alleles did not modify the gene reporter activities of engineered CBR3 promoter constructs. In line, hepatic CBR3 mRNA levels were not associated with CBR3 -725T>C and CBR3 -326T>A genotype status.

Conclusions

These studies provide the first insights into the regulation and variable hepatic expression of polymorphic CBR3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AHR:

aryl hydrocarbon receptor

AIM:

ancestry informative markers

AP1 or JUN:

activator protein 1

CBR1 :

Carbonyl reductase 1

CBR3 :

Carbonyl Reductase 3

CBR4 :

Carbonyl reductase 4

CHF:

congestive heart failure

CI:

confidence interval

OCT-1 or POU2F1:

octamer binding transcription factor 1

PCR:

polymerase chain reaction

SNP:

single nucleotide polymorphism

SP1:

Sp1 transcription factor

XRE:

xenobiotic response elements

REFERENCES

  1. Matsunaga T, Shintani S, Hara A. Multiplicity of mammalian reductases for xenobiotic carbonyl compounds. Drug Metab Pharmacokinet. 2006;21:1–18.

    Article  PubMed  CAS  Google Scholar 

  2. Rosemond MJ, Walsh JS. Human carbonyl reduction pathways and a strategy for their study in vitro. Drug Metab Rev. 2004;36:335–61.

    Article  PubMed  CAS  Google Scholar 

  3. Forrest GL, Gonzalez B. Carbonyl reductase. Chem Biol Interact. 2000;129:21–40.

    Article  PubMed  CAS  Google Scholar 

  4. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56:185–229.

    Article  PubMed  CAS  Google Scholar 

  5. Fan L, Goh BC, Wong CI, Sukri N, Lim SE, Tan SH, et al. Genotype of human carbonyl reductase CBR3 correlates with doxorubicin disposition and toxicity. Pharmacogenet Genomics. 2008;18:623–31.

    Article  CAS  Google Scholar 

  6. Lal S, Sandanaraj E, Wong ZW, Ang PC, Wong NS, Lee EJ, et al. CBR1 and CBR3 pharmacogenetics and their influence on doxorubicin disposition in Asian breast cancer patients. Cancer Sci. 2008;99:2045–54.

    Article  PubMed  CAS  Google Scholar 

  7. Blanco JG, Leisenring WM, Gonzalez-Covarrubias VM, Kawashima TI, Davies SM, Relling MV, et al. Genetic polymorphisms in the carbonyl reductase 3 gene CBR3 and the NAD(P)H:quinone oxidoreductase 1 gene NQO1 in patients who developed anthracycline-related congestive heart failure after childhood cancer. Cancer. 2008;112:2789–95.

    Article  PubMed  Google Scholar 

  8. Watanabe K, Sugawara C, Ono A, Fukuzumi Y, Itakura S, Yamazaki M, et al. Mapping of a novel human carbonyl reductase, CBR3, and ribosomal pseudogenes to human chromosome 21q22.2. Genomics. 1998;52:95–100.

    Article  PubMed  CAS  Google Scholar 

  9. Covarrubias VG, Lakhman SS, Forrest A, Relling MV, Blanco JG. Higher activity of polymorphic NAD(P)H:quinone oxidoreductase in liver cytosols from blacks compared to whites. Toxicol Lett. 2006;164:249–58.

    Article  PubMed  CAS  Google Scholar 

  10. Gonzalez-Covarrubias V, Zhang J, Kalabus JL, Relling MV, Blanco JG. Pharmacogenetics of human carbonyl reductase 1 (CBR1) in livers from black and white donors. Drug Metab Dispos. 2009;37:400–7.

    Article  PubMed  CAS  Google Scholar 

  11. Blanquicett C, Johnson MR, Heslin M, Diasio RB. Housekeeping gene variability in normal and carcinomatous colorectal and liver tissues: applications in pharmacogenomic gene expression studies. Anal Biochem. 2002;303:209–14.

    Article  PubMed  CAS  Google Scholar 

  12. Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol. 2002;29:23–39.

    Article  PubMed  CAS  Google Scholar 

  13. Zamber CP, Lamba JK, Yasuda K, Farnum J, Thummel K, Schuetz JD, et al. Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine. Pharmacogenetics. 2003;13:19–28.

    Article  PubMed  CAS  Google Scholar 

  14. Butler JEF, Kadonaga JT. The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev. 2002;16:2583–92.

    Article  PubMed  CAS  Google Scholar 

  15. Lakhman SS, Chen X, Gonzalez-Covarrubias V, Schuetz EG, Blanco JG. Functional characterization of the promoter of human carbonyl reductase 1 (CBR1). Role of XRE elements in mediating the induction of CBR1 by ligands of the aryl hydrocarbon receptor. Mol Pharmacol. 2007;72:734–43.

    Article  PubMed  CAS  Google Scholar 

  16. Wierstra I. Sp1: emerging roles–beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun. 2008;372:1–13.

    Article  PubMed  CAS  Google Scholar 

  17. Olson RD, Mushlin PS, Brenner DE, Fleischer S, Cusack BJ, Chang BK, et al. Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc Natl Acad Sci U S A. 1988;85:3585–9.

    Article  PubMed  CAS  Google Scholar 

  18. Olson LE, Bedja D, Alvey SJ, Cardounel AJ, Gabrielson KL, Reeves RH. Protection from doxorubicin-induced cardiac toxicity in mice with a null allele of carbonyl reductase 1. Cancer Res. 2003;63:6602–6.

    PubMed  CAS  Google Scholar 

  19. Forrest GL, Gonzalez B, Tseng W, Li X, Mann J. Human carbonyl reductase overexpression in the heart advances the development of doxorubicin-induced cardiotoxicity in transgenic mice. Cancer Res. 2000;60:5158–64.

    PubMed  CAS  Google Scholar 

  20. Krischer JP, Epstein S, Cuthbertson DD, Goorin AM, Epstein ML, Lipshultz SE. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the pediatric oncology group experience. J Clin Oncol. 1997;15:1544–52.

    PubMed  CAS  Google Scholar 

  21. Grenier MA, Lipshultz SE. Epidemiology of anthracycline cardiotoxicity in children and adults. Semin Oncol. 1998;25:72–85.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The technical assistance of Erick Vasquez and Sukhwinder Lakhman is gratefully acknowledged.

This work was supported by NIH/NIGMS grant GM73646 to JGB. Genotype and phenotype datasets will be available at the PharmGKB database (http://www.pharmgkb.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier G. Blanco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Blanco, J.G. Identification of the Promoter of Human Carbonyl Reductase 3 (CBR3) and Impact of Common Promoter Polymorphisms on Hepatic CBR3 mRNA Expression. Pharm Res 26, 2209–2215 (2009). https://doi.org/10.1007/s11095-009-9936-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9936-9

KEY WORDS

Navigation