Skip to main content
Log in

Involvement of Uric Acid Transporters in Alteration of Serum Uric Acid Level by Angiotensin II Receptor Blockers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To examine the mechanisms of the alteration of serum uric acid level by angiotensin II receptor blockers (ARBs), the effects of ARBs on renal uric acid transporters, including OAT1, OAT3, OAT4, and MRP4, were evaluated.

Materials and Methods

Uptakes of uric acid by OAT1-expressing Flp293 cells, by Xenopus oocytes expressing OAT3 or OAT4, and by membrane vesicles from Sf9 cells expressing MRP4 were evaluated in the presence or absence of ARBs.

Results

All ARBs inhibited uptake of uric acid or estrone-3-sulfate by OAT1, OAT3 and OAT4 in concentration dependent manners. Among them, the IC50 values of valsartan, olmesartan and pratosartan for OAT3 were comparable to clinically observed unbound maximum plasma concentration of ARBs. Candesartan, losartan, and telmisartan inhibited ATP-dependent uptake of uric acid by MRP4 at 10 μM. The IC50 value of losartan for MRP4 was comparable to the estimated kidney tissue concentration of losartan. No ARBs showed trans-stimulatory effects on the uptake of estrone-3-sulfate by OAT4.

Conclusion

Valsartan, olmesartan, and pratosartan could inhibit the OAT3-mediated uric acid secretion in clinical situations. Furthermore losartan could inhibit ATP-dependent uric acid secretion by MRP4. These effects may explain partially the alteration of serum uric acid level by ARBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ARB:

angiotensin II receptor blocker

E13S:

estrone-3-sulfate

MRP:

multidrug resistance-associated protein

OAT:

organic anion transporter

SUA:

serum uric acid

URAT1:

uric acid transporter

References

  1. M. H. Alderman, H. Cohen, S. Madhavan, and S. Kivlighn. Serum uric acid and cardiovascular events in successfully treated hypertensive patients. Hypertension 34:144–150 (1999).

    PubMed  CAS  Google Scholar 

  2. P. Verdecchia, G. Schillaci, G. Reboldi, S. C. Santeusanio, C. Porcellati, and P. Brunetti. Relation between serum uric acid and risk of cardiovascular disease in essential hypertension. The PIUMA study. Hypertension 36:1072–1078 (2000).

    PubMed  CAS  Google Scholar 

  3. A. J. Manolis, E. Grossman, B. Jelakovic, A. Jacovides, D. C. Bernhardi, W. J. Cabrera, L. A. Watanabe, J. Barragan, N. Matadamas, A. Mendiola, K. S. Woo, J. R. Zhu, A. D. Mejia, T. Bunt, T. Dumortier, and R. D. Smith. Effects of losartan and candesartan monotherapy and losartan/hydrochlorothiazide combination therapy in patients with mild to moderate hypertension. Losartan Trial Investigators. Clin. Ther. 22:1186–1203 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. W. J. Elliott, D. A. Calhoun, P. T. DeLucca, L. P. Gazdick, D. E. Kerns, and R. K. Zeldin. Losartan versus valsartan in the treatment of patients with mild to moderate essential hypertension: data from a multicenter, randomized, double-blind, 12-week trial. Clin. Ther. 23:1166–1179 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. M. Nakashima, T. Uematsu, K. Kosuge, and M. Kanamaru. Pilot study of the uricosuric effect of DuP-753, a new angiotensin II receptor antagonist, in healthy subjects. Eur. J. Clin. Pharmacol. 42:333–335 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. M. Burnier, B. Rutschmann, J. Nussberger, J. Versaggi, S. Shahinfar, B. Weaber, and H.R. Brunner salt-dependent renal effects of an angiotensin II antagonist in healthy subjects. Hypertension 22:339–347 (1993).

    PubMed  CAS  Google Scholar 

  7. J. P. Fauvel, S. Velon, N. Berra, N. Pozet, O. Madonna, P. Zech, and M. Laville. Effects of losartan on renal function in patients with essential hypertension. J. Cardiovasc. Pharmacol. 28:259–263 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. R. W. Rundles. The development of allopurinol. Arch. Intern. Med. 145:1492–1503 (1985).

    Article  PubMed  CAS  Google Scholar 

  9. D. A. Sica and A. C. Schoolwerth. Chapter 16, Renal handling of organic anions and cations: Excretion of uric acid. In B. M. Brenner (ed.), The Kidney, 6th edn, Saunders, Philadelphia, 2000, pp. 680–700.

    Google Scholar 

  10. M. A. Hediger, R. J. Johnson, H. Miyazaki, and H. Endou. Molecular physiology of urate transport. Physiology 20:125–133 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. A. Enomoto, H. Kimura, A. Chairoungdua, Y Shigeta, P. Jutabha, S. H. Cha, M Hosoyamada, M. Takeda, T. Sekine, T. Igarashi, H. Matsuo, Y. Kikuchi, T. Oda, K. Ichida, T. Hosoya, K. Shimokata, T. Niwa, Y. Kanai, and H. Endou. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417:447–452 (2002).

    PubMed  CAS  Google Scholar 

  12. Y. Hagos, D. Stein, B. Ugele, G. Burckhardt, and A. Bahn. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J. Am. Soc. Nephrol. 18:430–437 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. K. Icida, M. Hosoyamada, H. Kimura, M. Takeda, Y. Utsunomiya, T. Hosoya, and H. Endou. Urate transport via human PAH transporter hOAT1 and its gene structure. Kidney Int. 63:143–155 (2003).

    Article  Google Scholar 

  14. S. H. Cha, T. Sekine, J. Fukushima, Y. Kanai, Y. Kobayashi, T. Goya, and H. Endou. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol. Pharmacol. 59:1277–1286 (2001).

    PubMed  CAS  Google Scholar 

  15. R. A. M. H. van Aubel, P. H. E. Smeets, J. J. M. W. van den Heuvel, and F. G. M. Russel. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am. J. Physiol. Renal. Physiol. 288:F327–F333 (2004).

    Article  PubMed  Google Scholar 

  16. N. Ishiguro, A. Saito, K. Yokoyama, M. Morikawa, T. Igarashi, and I Tamai. Transport of the dopamine D2 agonist pramipexole by rat organic cation transporters OCT1 and OCT2 in kidney. Drug Metab. Dispos. 33:495–499 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. A Tsuji, A. Sakata, and I Tamai. Tissue distribution of the multidrug-resistance gene product P-glycoprotein and its physiological function. Nippon Rinsho 55:1059–1063 (1997).

    PubMed  CAS  Google Scholar 

  18. R. Ohashi, I Tamai, H. Yabuuchi, J. Nezu, A. Oku, Y. Sai, M. Shimane, and A. Tsuji. Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J. Pharmacol. Exp. Ther. 291:778–784 (1999).

    PubMed  CAS  Google Scholar 

  19. T. Iwanaga, M. Sato, T. Maeda, T. Ogihara, and I Tamai. Concentration-dependent mode of interaction of angiotensin II receptor blockers with uric acid transporter. J. Pharmacol. Exp. Ther. 320:211–217 (2007).

    Article  PubMed  CAS  Google Scholar 

  20. M. Hosoyamada, T. Sekine, Y. Kanai, and H. Endou. Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Am. J. Physiol. 276:F122–F128 (1999).

    PubMed  CAS  Google Scholar 

  21. E. R. Liman, J. Tytgat, and P. Hess. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9:861–871 (1992).

    Article  PubMed  CAS  Google Scholar 

  22. T. Iwanaga, D. Kobayashi, M. Hirayama, T. Maeda, and I. Tamai. Involvement of uric acid transporter in increased renal clearance of the xanthine oxidase inhibitor oxypurinol induced by a uricosuric agent, benzbromarone. Drug Metab. Dispos. 33:1791–1795 (2005).

    PubMed  CAS  Google Scholar 

  23. M. Tsuda-Tsukimoto, T. Maeda, T. Iwanaga, T. Kume, and I Tamai. Characterization of hepatobiliary transport systems of a novel α4β1/α4β7 dual antagonist, TR-14035. Pharm. Res. 23:2646–2656 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. M. Rius, A. T. Nies, J. Hummel-Eisenbeiss, G. Jedlitschky, and D. Keppler. Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology. 38:374–384 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. F. Yamashita, H. Ohtani, N. Koyabu, F. Ushigome, H. Satoh, H. Murakami, T. Uchiumi, T. Nakamura, M. Kuwano, M. Tsujimoto, and Y. Sawada. Inhibitory effect of angiotensin II receptor antagonists and leukotriene receptor antagonists on the transport of human organic transporter 4. J. Pharm. Pharmacol. 58:1499–1505 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. H. Uchino, I Tamai, K. Yamashita, Y. Minemoto, Y. Sai, H. Yabuuchi, K. Miyamoto, E. Takeda, and A Tsuji. p-Aminohippuric acid transport at renal apical membrane mediated by human inorganic phosphate transporter NPT1. Biochem. Biophys. Res. Commun. 270:254–259 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported in part by a Grant in Aid for Scientific Research from The Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikumi Tamai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, M., Iwanaga, T., Mamada, H. et al. Involvement of Uric Acid Transporters in Alteration of Serum Uric Acid Level by Angiotensin II Receptor Blockers. Pharm Res 25, 639–646 (2008). https://doi.org/10.1007/s11095-007-9401-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9401-6

Key words

Navigation