Skip to main content
Log in

Modeling of Corticosteroid Effects on Hepatic Low-Density Lipoprotein Receptors and Plasma Lipid Dynamics in Rats

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study examines methylprednisolone (MPL) effects on the dynamics of hepatic low-density lipoprotein receptor (LDLR) mRNA and plasma lipids associated with increased risks for atherosclerosis.

Materials and methods

Normal male Wistar rats were given 50 mg/kg MPL intramuscularly (IM) and sacrificed at various times. Measurements included plasma MPL and CST, hepatic glucocorticoid receptor (GR) mRNA, cytosolic GR density and hepatic LDLR mRNA, and plasma total cholesterol (TC), low-density lipoprotein cholesterol (LDLC), high density lipoprotein cholesterol (HDLC), and triglycerides (TG).

Results

MPL showed bi-exponential disposition with two first-order absorption components. Hepatic GR and LDLR mRNA exhibited circadian patterns which were disrupted by MPL. Down-regulation in GR mRNA (40–50%) was followed by a delayed rebound phase. LDLR mRNA exhibited transient down-regulation (60–70%). Cytosolic GR density was significantly suppressed but returned to baseline by 72 h. Plasma TC and LDLC showed increases (55 and 142%) at 12 h. A mechanistic receptor/gene pharmacokinetic/pharmacodynamic model was developed to describe CS effects on hepatic LDLR mRNA and plasma cholesterols.

Conclusions

Our PK/PD model was able to satisfactorily capture the MPL effects on hepatic LDLR, its relationship to various plasma cholesterols, and builds the foundation to explore this area in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ADX:

adrenalectomized

CS:

corticosteroids

CST:

corticosterone

DR:

drug-receptor complex

DR(N):

nuclear drug-receptor complex.

GR:

glucocorticoid receptor

HDLC:

high-density lipoprotein cholesterol

LDLC:

low-density lipoprotein cholesterol

LDLR:

low-density lipoprotein receptors

MPL:

methylprednisolone

PD:

pharmacodynamics

PK:

pharmacokinetics

RT-PCR:

reverse transcription polymerase chain reaction

TC:

total cholesterol

TG:

triglycerides

References

  1. H. Schacke, W. D. Docke, and K. Asadullah. Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther. 96:23–43 (2002).

    Article  PubMed  CAS  Google Scholar 

  2. D. Adlersberg, L. Schaefer, and S. R. Drachman. Development of hypercholesteremia during cortisone and ACTH therapy. JAMA 144:909–914 (1950).

    CAS  Google Scholar 

  3. R. L. Blum. Computer-assisted design of studies using routine clinical data. Analyzing the association of prednisone and cholesterol. Ann Int Med 104:858–868 (1986).

    PubMed  CAS  Google Scholar 

  4. J. D. Bagdade, E. Yee, J. Albers, and O. J. Pykalisto. Glucocorticoids and triglyceride transport: effects on triglyceride secretion rates, lipoprotein lipase, and plasma lipoproteins in the rat. Metab. Clin. Exp. 25:533–542 (1976).

    PubMed  CAS  Google Scholar 

  5. D. M. Becker, M. Markakis, M. Sension, S. Vitalis, K. Baughman, R. Swank, P. O. Kwiterovich, T. A. Pearson, S. C. Achuff, and W. A. Baumgartner. Prevalence of hyperlipidemia in heart transplant recipients. Transplantation 44:323–325 (1987).

    Article  PubMed  CAS  Google Scholar 

  6. B. Staels, A. van Tol, L. Chan, G. Verhoeven, and J. Auwerx. Variable effects of different corticosteroids on plasma lipids, apolipoproteins, and hepatic apolipoprotein mRNA levels in rats. Arterioscler. Thromb. 11:760–769 (1991).

    PubMed  CAS  Google Scholar 

  7. D. W. Bilheimer. Regulation of LDL receptors in vivo. Agents Actions Suppl 16:191–203 (1984).

    PubMed  CAS  Google Scholar 

  8. A. M. Salter, S. C. Fisher, and D. N. Brindley. Binding of low-density lipoprotein to monolayer cultures of rat hepatocytes is increased by insulin and decreased by dexamethasone. FEBS Lett. 220:159–162 (1987).

    Article  PubMed  CAS  Google Scholar 

  9. M. S. Brown and J. L. Goldstein. A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47 (1986).

    Article  PubMed  CAS  Google Scholar 

  10. O. Al Rayyes, A. Wallmark, and C. H. Floren. Additive inhibitory effect of hydrocortisone and cyclosporine on low-density lipoprotein receptor activity in cultured HepG2 cells. Hepatology 26:967–971 (1997).

    Article  PubMed  Google Scholar 

  11. R. R. Almon, J. Chen, G. Snyder, D. C. Dubois, W. J. Jusko, and E. P. Hoffman. In vivo multi-tissue corticosteroid microarray time series available online at Public Expression Profile Resource (PEPR). Pharmacogenomics 4:791–799 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. Y. N. Sun, D. C. DuBois, R. R. Almon, and W. J. Jusko. Fourth-generation model for corticosteroid pharmacodynamics: a model for methylprednisolone effects on receptor/gene-mediated glucocorticoid receptor down-regulation and tyrosine aminotransferase induction in rat liver. J. Pharmacokinet. Biopharm. 26:289–317 (1998).

    Article  PubMed  CAS  Google Scholar 

  13. Y. N. Sun, L. I. McKay, D. C. DuBois, W. J. Jusko, and R. R. Almon. Pharmacokinetic/pharmacodynamic models for corticosteroid receptor down-regulation and glutamine synthetase induction in rat skeletal muscle by a receptor/gene-mediated mechanism. J. Pharmacol. Exp. Ther. 288:720–728 (1999).

    PubMed  CAS  Google Scholar 

  14. D. B. Haughey and W. J. Jusko. Analysis of methylprednisolone, methylprednisone and corticosterone for assessment of methylprednisolone disposition in the rat. J. Chromatogr. 430:241–248 (1988).

    Article  PubMed  CAS  Google Scholar 

  15. D. C. DuBois, R. R. Almon, and W. J. Jusko. Molar quantification of specific messenger ribonucleic acid expression in northern hybridization using cRNA standards. Anal. Biochem. 210:140–144 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. A. Hazra, W. J. Jusko, R. R. Almon, and D. C. DuBois. Pharmacodynamics of circadian rhythm of corticosterone effects on tyrosine aminotransferase in normal rats. AAPS J 6: Abstract T3355 (2005).

  17. Z. Yao, D. C. Dubois, R. R. Almon, and W. J. Jusko. Modeling circadian rhythms of glucocorticoid receptor and glutamine synthetase expression in rat skeletal muscle. Pharm. Res. 23:670–679 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. A. Hazra, N. A. Pyszczynski, D. C. Dubois, R. R. Almon, and W. J. Jusko. Pharmacokinetics of methylprednisolone after intravenous and intramuscular administration in rats. Biopharm. Drug Dispos. 28:263–273 (2007).

    Article  PubMed  CAS  Google Scholar 

  19. M. J. Schaaf and J. A. Cidlowski. Molecular mechanisms of glucocorticoid action and resistance. J. Steroid Biochem. Mol. Biol. 83:37–48 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. R. J. Hache, R. Tse, T. Reich, J. G. Savory, and Y. A. Lefebvre. Nucleocytoplasmic trafficking of steroid-free glucocorticoid receptor. J. Biol. Chem. 274:1432–1439 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. H. Htun, J. Barsony, I. Renyi, D. L. Gould, and G. L. Hager. Visualization of glucocorticoid receptor translocation and intranuclear organization in living cells with a green fluorescent protein chimera. Proc. Natl. Acad. Sci. U. S. A. 93:4845–4850 (1996).

    Article  PubMed  CAS  Google Scholar 

  22. R. H. Oakley and J. A. Cidlowski. Homologous down regulation of the glucocorticoid receptor: the molecular machinery. Crit. Rev. Eukaryot. Gene Expr. 3:63–88 (1993).

    PubMed  CAS  Google Scholar 

  23. M. Beato, G. Chalepakis, M. Schauer, and E. P. Slater. DNA regulatory elements for steroid hormones. J. Steroid Biochem. 32:737–747 (1989).

    Article  PubMed  CAS  Google Scholar 

  24. K. L. Burnstein, C. M. Jewell, and J. A. Cidlowski. Human glucocorticoid receptor cDNA contains sequences sufficient for receptor down-regulation. J. Biol. Chem. 265:7284–7291 (1990).

    PubMed  CAS  Google Scholar 

  25. A. Hazra, D.C. Dubois, R.R. Almon, and W.J. Jusko. Assessing the dynamics of nuclear glucocoticoid-receptor complex: Adding flexibility to gene expression modeling. J. Pharmacokinet. Pharmacodyn. 34:333–354 (2007).

    Article  PubMed  CAS  Google Scholar 

  26. A.-N. Kong, G. L. Jungbluth, M. T. Pasko, T. R. Beam, and W. J. Jusko. Pharmacokinetics of methylprednisolone sodium succinate and methylprednisolone in patients undergoing cardiopulmonary bypass. Pharmacotherapy 10:29–34 (1990).

    PubMed  CAS  Google Scholar 

  27. W. Krzyzanski, A. Chakraborty, and W. J. Jusko. Algorithm for application of Fourier analysis for biorhythmic baselines of pharmacodynamic indirect response models. Chronobiol. Int. 17:77–93 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. P. T. Kovanen. Regulation of plasma cholesterol by hepatic low-density lipoprotein receptors. Am. Heart J. 113:464–469 (1987).

    Article  PubMed  CAS  Google Scholar 

  29. E. J. Antal, C. E. Wright, 3rd, W. R. Gillespie, and K. S. Albert. Influence of route of administration on the pharmacokinetics of methylprednisolone. J. Pharmacokinet Biopharm. 11:561–576 (1983).

    Article  PubMed  CAS  Google Scholar 

  30. M. N. Samtani and W. J. Jusko. Comparison of dexamethasone pharmacokinetics in female rats after intravenous and intramuscular administration. Biopharm. Drug Dispos. 26:85–91 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. R. Ramakrishnan, D. C. DuBois, R. R. Almon, N. A. Pyszczynski, and W. J. Jusko. Fifth-generation model for corticosteroid pharmacodynamics: application to steady-state receptor down-regulation and enzyme induction patterns during seven-day continuous infusion of methylprednisolone in rats. J. Pharmacokinet. Pharmacodyn. 29:1–24 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. Y. N. Sun, D. C. DuBois, R. R. Almon, N. A. Pyszczynski, and W. J. Jusko. Dose-dependence and repeated-dose studies for receptor/gene-mediated pharmacodynamics of methylprednisolone on glucocorticoid receptor down-regulation and tyrosine aminotransferase induction in rat liver. J. Pharmacokinet. Biopharm. 26:619–648 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. M. Dobiasova. [AIP—atherogenic index of plasma as a significant predictor of cardiovascular risk: from research to practice]. Vnitrni Lekarstvi 52:64–71 (2006).

    PubMed  CAS  Google Scholar 

  34. T. Vaskonen, E. Mervaala, L. Krogerus, and H. Karppanen. Supplementation of plant sterols and minerals benefits obese Zucker rats fed an atherogenic diet. J. Nutr. 132:231–237 (2002).

    PubMed  CAS  Google Scholar 

  35. J. H. Exton. Regulation of gluconeogenesis by glucocorticoids. Monogr. Endocrinol. 12:535–546 (1979).

    PubMed  CAS  Google Scholar 

  36. E. Savontaus, I. M. Conwell, and S. L. Wardlaw. Effects of adrenalectomy on AGRP, POMC, NPY and CART gene expression in the basal hypothalamus of fed and fasted rats. Brain Res. 958:130–138 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. S. Balasubramaniam, A. Szanto, and P. D. Roach. Circadian rhythm in hepatic low-density-lipoprotein (LDL)-receptor expression and plasma LDL levels. Biochem. J. 298:39–43 (1994).

    PubMed  CAS  Google Scholar 

  38. C. Galman, B. Angelin, and M. Rudling. Prolonged stimulation of the adrenals by corticotropin suppresses hepatic low-density lipoprotein and high-density lipoprotein receptors and increases plasma cholesterol. Endocrinology 143:1809–1816 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. C. Cabot, A. Salas, R. Ferrer-Lorente, P. Savall, X. Remesar, J. A. Fernandez-Lopez, M. Esteve, and M. Alemany. Short-term oral oleoyl–estrone treatment increases plasma cholesterol turnover in the rat. Int. J. Obes. (Lond) 29:534–539 (2005).

    CAS  Google Scholar 

  40. T. E. Carew, R. C. Pittman, and D. Steinberg. Tissue sites of degradation of native and reductively methylated [14C]sucrose-labeled low density lipoprotein in rats. Contribution of receptor-dependent and receptor-independent pathways. J. Biol. Chem. 257:8001–8008 (1982).

    PubMed  CAS  Google Scholar 

  41. P. Barter, J. Kastelein, A. Nunn, R. Hobbs, and Future Forum Editorial Board. High density lipoproteins (HDLs) and atherosclerosis; the unanswered questions. Atherosclerosis 168:195–211 (2003).

    Article  PubMed  CAS  Google Scholar 

  42. R. J. Jennings, N. Lawson, R. Fears, and D. N. Brindley. Stimulation of the activities of phosphatidate phosphohydrolase and tyrosine aminotransferase in rat hepatocytes by glucocorticoids. FEBS Lett. 133:119–122 (1981).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by Grant no. GM 24211 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Jusko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.23 MB)

ESM 2

(PDF 267 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazra, A., Pyszczynski, N.A., DuBois, D.C. et al. Modeling of Corticosteroid Effects on Hepatic Low-Density Lipoprotein Receptors and Plasma Lipid Dynamics in Rats. Pharm Res 25, 769–780 (2008). https://doi.org/10.1007/s11095-007-9371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9371-8

Key words

Navigation