Skip to main content

Advertisement

Log in

AAPS-FDA Workshop White Paper: Microdialysis Principles, Application and Regulatory Perspectives

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Many decisions in drug development and medical practice are based on measuring blood concentrations of endogenous and exogenous molecules. Yet most biochemical and pharmacological events take place in the tissues. Also, most drugs with few notable exceptions exert their effects not within the bloodstream, but in defined target tissues into which drugs have to distribute from the central compartment. Assessing tissue drug chemistry has, thus, for long been viewed as a more rational way to provide clinically meaningful data rather than gaining information from blood samples. More specifically, it is often the extracellular (interstitial) tissue space that is most closely related to the site of action (biophase) of the drug. Currently microdialysis (μD) is the only tool available that explicitly provides data on the extracellular space. Although μD as a preclinical and clinical tool has been available for two decades, there is still uncertainty about the use of μD in drug research and development, both from a methodological and a regulatory point of view. In an attempt to reduce this uncertainty and to provide an overview of the principles and applications of μD in preclinical and clinical settings, an AAPS-FDA workshop took place in November 2005 in Nashville, TN, USA. Stakeholders from academia, industry and regulatory agencies presented their views on μD as a tool in drug research and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. U. Ungerstedt and C. Pycock. Functional correlates of dopamine neurotransmission. Bull. Schweiz. Akad. Med. Wiss. 30:44–55 (1974).

    PubMed  CAS  Google Scholar 

  2. E. C. M. De Lange, A. G. De Boer, and D. D. Breimer. Methodological issues in microdialysis sampling for pharmacokinetic studies. Eds. R. Sawchuk and W. F. Elmquist. Adv. Drug Deliv. Rev. 45:125–148 ( 2000).

    Google Scholar 

  3. W. F. Elmquist and R. J. Sawchuk. Application of microdialysis in pharmacokinetic studies. Pharm. Res. 14:267–288 (1997).

    Article  Google Scholar 

  4. C. S. Chaurasia. In vivo microdialysis sampling: theory and applications. Biomed. Chromatogr. 13:317–332 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. E. C. M. De Lange, and M. Danhof: Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin. Pharmacokinet. 41:691–703, 2002.

    Article  PubMed  Google Scholar 

  6. M. I. Davies, J. D. Cooper, S. S. Desmond, C. E. Lunte, and S. M. Lunte. Analytical considerations for microdialysis sampling. Adv. Drug Deliv. Rev. 45:169–88 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. E. C. M. De Lange, M. Danhof, A. G. De Boer, and D. D. Breimer. Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on blood–brain barrier transport of drugs. Brain Res. Rev. 25:27–49 (1997).

    Article  PubMed  Google Scholar 

  8. U. Ungerstedt. Microdialysis—principles and applications for studies in animals and man. J. Intern. Med. 230:365–373 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. E. C. M. De Lange, A. H. de Bock, A. G. de Boer Schinkel, and D. D. Breimer. BBB transport and P-glycoprotein functionality using MDR1A (−/−) and wild-type mice. Total brain versus microdialysis concentration profiles of rhodamine-123. Pharm. Res. 15:1657–1665 (1998).

    Article  PubMed  Google Scholar 

  10. P. M. Bungay and R. L. Dedrick, E. Fox, and F. M. Balis. Probe calibration in transient microdialysis in vivo. Pharm. Res. 18:361–366 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. A. D. Smith and J. B. Justice Jr. The effect of inhibition of synthesis, release, metabolism and uptake on the microdialysis extraction fraction of dopamine. J. Neurosci. Methods 54:75–82 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. E. C. M. De Lange, P. G. M. Ravenstijn, D. Groenendaal, and T. S. van Steeg. Towards the prediction of CNS drug effect profiles in physiological and pathological conditions using microdialysis and mechanism-based pharmacokinetic-pharmacodynamic modeling. AAPS J. 7:E532–543, (2005).

    Article  PubMed  CAS  Google Scholar 

  13. P. Ederoth, K. Tunblad, R. Bouw, J. C. F. Lundberg, U. Ungerstedt, C. H. Nordström, and M. Hammarlund-Udenaes. Blood–brain barrier transport of morphine in patients with severe brain trauma. Brit. J. Clin. Pharmacol. 57:427–435 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. L. B. Stolle, M. Arpi, P. Holmberg-Jorgensen, P. Riegels-Nielsen, and J. Keller. Application of microdialysis to cancellous bone tissue for measurement of gentamicin levels. J. Antimicrob. Chemother. 54:263–265 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. T. Zhu, B. W. Cheung, L. L. Cartier, G. S. Giebink, and R. J. Sawchuk. Simultaneous intravenous and intramiddle-ear dosing to determine cefditoren influx and efflux clearances in middle ear fluid in freely moving chinchillas. J. Pharm. Sci. 92:1947–1956 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. S. R. Skilling, D. H. Smullin, A. J. Beitz, and A. A. Larson. Extracellular amino acid concentrations in the dorsal spinal cord of freely moving rats following veratridine and nociceptive stimulation. J. Neurochem. 51:127–132, (1988).

    Article  PubMed  CAS  Google Scholar 

  17. B. S. Anand, H. Atluri, and A. K. Mitra. Validation of an ocular microdialysis technique in rabbits with permanently implanted vitreous probes: systemic and intravitreal pharmacokinetics of fluorescein. Int. J. Pharm. 28:79–88 (2004).

    Article  CAS  Google Scholar 

  18. M. Qian, W. West, J. T. Wu, B. Lu, and D. D. Christ. Development of a dog microdialysis model for determining synovial fluid pharmacokinetics of anti-arthritis compounds exemplified by methotrexate. Pharm. Res. 20:605–10 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. E. Solligård, I. S..Juel, K. Bakkelund, P.Jynge, K. E. Tvedt H. Johnsen, P. Aadahl, and J. E. Grønbech. Gut luminal microdialysis of glycerol as a marker of intestinal ischemic injury and recovery. Crit. Care Med. 33:2278–2285 (2005).

    Article  PubMed  Google Scholar 

  20. J. L. Krup and C. M. Bernards. Pharmacokinetics of intrathecal oligodeoxynucleotides. Anesthesiology. 100:315–322 (2004).

    Article  Google Scholar 

  21. Y. Wang and R. J. Sawchuk. Zidovudine transport in the rabbit brain during intravenous and intracerebroventricular infusion. J. Pharm. Sci. 84:871–876 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. J. Riese, S. Boecker, W. Hohenberger, P. Klein, and W. Haupt. Microdialysis: a new technique to monitor perioperative human peritoneal mediator production. Surg. Infect. 4:11–5 (2003).

    Article  Google Scholar 

  23. M. Brunner and M. Muller. Microdialysis: an in vivo approach for measuring drug delivery in oncology. Eur. J. Clin. Pharmacol. 58: 227-234 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. A. Galvan, Y. Smith, and T. Wichmann. Continuous monitoring of intracerebral glutamate levels in awake monkeys using microdialysis and enzyme fluorometric detection. J.Neurosci. Methods. 126:175–85 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. P. F. Morrison, P. M. Bungay, J. K. Hsiao, I. N. Mefford,K. H. Dykstra, and R. L. Dedrick. Quantitative microdialysis. In: T. E. Robinson, J. B. Justice, Jr. (eds.), Microdialysis in the Neurosciences. Elsevier, N.Y., 1996, pp. 47–80.

    Google Scholar 

  26. K. C. Chen, M. Höistad, J. Kehr, J., K. Fuxe, and C. Nicholson. Theory relating in vitro and in vivo microdialysis of one or two probes. J. Neurochem. 81:108–121 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. P. M. Bungay, P. F. Morrison, R. L. Dedrick, V. I. Chefer, A. Zapata. Principles of Quantitative Microdialysis. In B. H. C. Westerink, T. I. F. H. Cremers (eds.) Handbook of Microdialysis, Vol. 16: Methods, Applications and Perspectives. Elsevier, N.Y. (in press).

  28. P. Lönnroth, P A. Jansson, and U. Smith. A microdialysis method allowing characterization of intercellular water space in humans. Am. J. Physiol. 253(2 pt 1):E228–E231(1987).

    PubMed  Google Scholar 

  29. R. J. Olson and J. B. Justice, Jr. Quantitative microdialysis under transient conditions. Anal. Chem. 65:1017–1022 (1993).

    Article  PubMed  CAS  Google Scholar 

  30. Y. S. L. Wang, and R. J. Sawchuk. Microdialysis calibration using retrodialysis and zero-net flux: application to a study of the distribution of zidovudine to rabbit cerebrospinal fluid and thalamus. Pharm. Res. 10:1411–1419 (1993).

    Article  PubMed  CAS  Google Scholar 

  31. M. R. Bouw, M. Hammarlund-Udenaes. Methodological aspects of the use of a calibrator in in vivo microdialysis—further development of the retrodialysis method. Pharm. Res. 15:1673–1679 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. L. Strindberg and P. Lönnroth. Validation of an endogenous reference technique for the calibration of microdialysis catheters. Scand. J. Clin. Lab. Invest. 60:205–211 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. H. Yang, J. L. Peters, and A. C. Michael. Coupled effects of mass transfer and uptake kinetics on in vivo microdialysis of dopamine. J. Neurochem. 71:684–692 (1998).

    Article  PubMed  CAS  Google Scholar 

  34. P. M. Bungay, P. Newton-Vinson, W. Isele, P. A. Garris, and J. B. Justice, Jr. Microdialysis of dopamine interpreted with quantitative model incorporating probe implantation trauma. J. Neurochem. 86:932–946 (2003).

    Article  PubMed  CAS  Google Scholar 

  35. K. C. Chen. Effects of tissue trauma on the characteristics of microdialysis zero-net-flux method sampling neurotransmitters. J. Theor. Biol. 238:863–881 (2006).

    Article  PubMed  CAS  Google Scholar 

  36. K. H. Dystra, J. K. Hsiao,P. F. Morrison,P. M. Bungay, I. N. Mefford, M. M. Scully, and R. L. Dedrick. Quantitative examination of tissue concentration profiles associated with microdialysis. J. Neurochem. 58:931–940 (1992).

    Article  Google Scholar 

  37. M. Höistad, K. C. Chen, C. Nicholson, K. Fuxe, and J. Kehr. Quantitative dual-probe microdialysis: evaluation of [3H]mannitol diffusion in agar and rat striatum. J. Neurochem. 81:80–93 (2002).

    Article  PubMed  Google Scholar 

  38. P. Lönnroth and L. Strindberg. Validation of the ‘internal reference technique’ for calibrating microdialysis catheters in situ. Acta. Physiol. Scand. 153:375–80 (1995).

    Article  PubMed  Google Scholar 

  39. M. Müller. Science, medicine and the future: microdialysis. BMJ 324:588–591 (2002).

    Article  PubMed  Google Scholar 

  40. M. Müller. Microdialysis in clinical drug delivery studies. Adv. Drug. Deliv. Rev. 45:255–269 (2000).

    Article  PubMed  Google Scholar 

  41. C. Kennergren, V. Mantovani, L. Strindberg, E. Berglin, A. Hamberger, P. Lönnroth. Myocardial interstitial glucose and lactate before, during, and after cardioplegic heart arrest. Am. J. Physiol., Endocrinol. Metabol. 284:E788–94 (2003).

    CAS  Google Scholar 

  42. B. M. Bellander, E. Cantais E, P. Enblad et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 30(12):2166–2169 (2004).

    Article  PubMed  Google Scholar 

  43. C. M. Tolias and M. R. Bullock. Critical Appraisal of Neuroprotection T1 Injury: What Have We Learned? NeuroRx 1:71–79 (2004).

    Article  PubMed  Google Scholar 

  44. M. Müller, A. dela Pena, and H. Derendorf. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue. Antimicrob. Agents Chemother. 48:1441–53 (2004).

    Article  PubMed  CAS  Google Scholar 

  45. M. Brunner, H. Derendorf, and M. Müller. Microdialysis for in vivo pharmacokinetic/pharmacodynamic characterization of anti-infective drugs. Curr. Opin. Pharmacol. 5:495–499 (2005).

    Article  PubMed  CAS  Google Scholar 

  46. M. Brunner and M. Müller. Microdialysis: an in vivo approach for measuring drug delivery in oncology. Eur. J. Clin. Pharmacol. 58:227–234 (2002)

    Article  PubMed  CAS  Google Scholar 

  47. V. P. Shah, G. L. Flynn, A Yacobi, H. I. Maibach, C. Bon, N. M. Fleischer, T. J. Franz, S. A. Kaplan, J. Kawamoto, L. J. Lesko, J. P. Marty, L. K. Pershing, H. Schaefer, J. A. Sequeira, S. P. Shrivastava, and W. J. Wilkin. Bioequivalence of topical dermatological dosage forms—methods of evaluation of bioequivalence. Pharm. Res. 15: 167–171 (1998).

    Article  PubMed  CAS  Google Scholar 

  48. M. Kreilgaard, M. J. Kemme, J. Burggraff, R. C. Schoemaker, and A. F. Cohen. Influence of a microemulsion vehicle on cutaneous bioequivalence of a lipophilic model drug assessed by microdialysis and pharmacodynamics. Pharm. Res. 18:593–599, (2001).

    Article  PubMed  CAS  Google Scholar 

  49. L. Groth L, P. García Ortiz, and E. Benfeldt. Microdialysis methodology for sampling in the skin. In: J Serup, GBE Jemec, and G Grove (eds.), Handbook of Non-Invasive Methods and the Skin. CRC, Boca Raton: 2006, pp. 443–454.

    Google Scholar 

  50. E. Benfeldt, J. Serup, and T. Menne. Effect of barrier perturbation on cutaneous salicylic acid penetration in human skin: in vivo pharmacokinetics using microdialysis and non-invasive quantification of barrier function. Br. J. Dermatol. 140:739–748 (1999).

    Article  PubMed  CAS  Google Scholar 

  51. S. McDonald and C. Lunte. Determination of the dermal penetration of esterom components using microdialysis sampling. Pharm. Res. 20:1827–1834 (2003).

    Article  PubMed  CAS  Google Scholar 

  52. E. Benfeldt, S. Honoré Hansen, A. Vølund, T. Menné, and V. P. Shah. Bioequivalence of topical formulations in humans: evaluation by dermal microdialysis sampling and the dermato-pharmacokinetic method. J. Invest. Dermatol. July 27(2006) (in press).

  53. P. Lönnroth. Microdialysis in adipose tissue and skeletal muscle. Horm. Metab. Res. 29:344–346 (1997).

    PubMed  Google Scholar 

  54. F. Magkos and L. S. Sidossis. Methodological approaches to the study of metabolism across individual tissues in man. Curr. Opin. Clin. Nutr. Metab. Care 8:501–510 (2005).

    Article  PubMed  CAS  Google Scholar 

  55. V. Qvisth, E. Hagström-Toft, S. Enoksson, R. S. Sherwin, S Sjöberg, and J. Bolinder. Combined hyperinsulinemia, but not hyperinsulinemia alone, suppress human skeletal muscle lipolytic activity in vivo. J. Clin. Endocrinol. Metab. 89:4693–4700 (2004).

    Article  PubMed  CAS  Google Scholar 

  56. J. Bolinder, U. Ungerstedt, and P. Arner. Long-term continuous glucose monitoring with microdialysis in ambulatory insulin-dependent diabetic patients. Lancet 342:1080–1085 (1993).

    Article  PubMed  CAS  Google Scholar 

  57. A. Maran, C Crepaldi, A. Tiengo, G. Grassi, E. Vitali, G. Pagano, S. Bistoni, G. Calabrese, F. saneusanio, F. Leonetti, M. Ribaudo, U. Di Mario, G. Anuzzi, S. Genovese, G. Riccardi, M. previti, D. Cucinotta, F. Giorgino, A. Bellomo, R. Giorgino, A. Poscia, and M Varalli. Continuous subcutaneous glucose monitoring in diabetic patients: a multicenter analysis. Diabetes Care 25: 347–352 (2002).

    Article  PubMed  CAS  Google Scholar 

  58. D. C. Klonoff. Continuous glucose monitoring: roadmap for 21st century diabetes therapy. Diabetes Care 28:1231–1239 (2005).

    Article  PubMed  Google Scholar 

  59. D. L. Kellogg Jr., Y. Liu, P. E. Pergola, and L. J. Roman. In Vivo measurement of nitric oxide concentrations in humans. FASEB J. 13:A104 (1999).

    Google Scholar 

  60. (CMA Cerebral Tissue Monitoring System, http://www.microdialysis.se/USA/PDF/510(k)%20Summary.pdf (accessed 10/23/06)

  61. Physicians’ Desk Reference (2006) Zonegran® clinical pharmacology FDA-approved label. http://www.thomsonhc.com/pdrel/librarian/PFDefaultActionId/pdrcommon.IndexSearchTranslator), (accessed 10/23/06)

  62. Catalyst pharmaceuticals partners files investigational new drug application for CPP-109 to treat cocaine addiction (2005) http://www.bnl.gov/CTN/GVG/CPP.asp), (accessed 10/23/06)

  63. Anti-infective Drug Advisory Committee Meeting (1998). Guidance documents on developing antimicrobial drugs: general considerations and individual indications. Gaithersburg, MD, July 31 http://www.fda.gov.lilac.une.edu/ohrms/dockets/ac/cder98t.htm#Anti-InfectiveDrugs

  64. EMEA (2006). 4.1.2. In vivo studies in: guideline on the non-clinical investigation of the dependence potential of medicinal products. European Medicines Agency, Evaluation of Medicines for Human Use. http://www.emea.eu.int/pdfs/human/swp/9422704en.pdf) (accessed 10/23/06)

  65. FDA (2004). Innovation or stagnation? Challenge and opportunity on the Critical Path to new medical products. US Department of Health and Human Services, Food and Drug Administration.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra S. Chaurasia.

Additional information

The views expressed in this paper are those of the authors and do not necessarily reflect the opinions of their companies/institutions or the official policy of the FDA. No official support or endorsement by the FDA is intended or should be inferred. The contents of this report were presented by the authors at the Microdialysis Workshop, Nashville, TN, Nov 4–5, 2005 organized by American Association of Pharmaceutical Scientists and Co-Sponsored with the US Food and Drug Administration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaurasia, C.S., Müller, M., Bashaw, E.D. et al. AAPS-FDA Workshop White Paper: Microdialysis Principles, Application and Regulatory Perspectives. Pharm Res 24, 1014–1025 (2007). https://doi.org/10.1007/s11095-006-9206-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9206-z

Key words

Navigation