Skip to main content
Log in

Improving the Oral Efficacy of Recombinant Granulocyte Colony-Stimulating Factor and Transferrin Fusion Protein by Spacer Optimization

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To improve the oral efficacy of the recombinant fusion protein containing granulocyte colony-stimulating factor (G-CSF) and transferrin (Tf) by inserting a linker between the two protein domains.

Materials and Methods

Oligonucleotides encoding flexible and helix-forming peptides were inserted to the recombinant plasmids. The fusion protein without linker insertion was used for comparison. The G-CSF cell-proliferation and Tf receptor-binding activities of the fusion proteins were tested in NFS-60 cells and Caco-2 cells, respectively, and in vivo myelopoietic assay with both subcutaneous and oral administration was performed in BDF1 mice.

Results

All fusion proteins produced from transfected HEK293 cells were positive in Western-blotting assay with anti-G-CSF and anti-Tf antibodies. Among them, the fusion protein with a long helical (H4-2) linker showed the highest activity in NFS-60 cell proliferation assay, with an EC50 about ten-fold lower than that of the non-linker fusion protein. The fusion protein with H4-2 linker also showed a significantly higher myelopoietic effect when administered either subcutaneously or orally in BDF1 mice.

Conclusion

The insertion of a linker peptide, such as the helix linker H4-2, between G-CSF and Tf domains in the recombinant fusion protein can improve significantly both in vitro and in vivo myelopoietic activity over the non-linker fusion protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANC:

absolute neutrophil count

G-CSF:

granulocyte colony stimulating factor

G-CSF-Tf:

recombinant fusion protein consisting of G-CSF and Tf

G-CSF-LE-Tf:

the fusion protein of G-CSF and Tf with a LE dipeptide linker

GS:

linker peptide with the amino acid sequence of (GGGGS)

H2:

linker peptide with the amino acid sequence of A(EAAAK)2A

H3:

linker peptide of A(EAAAK)3A

H4:

linker peptide of A(EAAAK)4A

H4-2:

linker peptide of A(EAAAK)4A

Tf:

transferrin

TfR:

transferrin receptor

References

  1. J. M. Reichert and C. Paquette. Therapeutic recombinant proteins: trends in US approvals 1982 to 2002. Curr. Opin. Mol. Ther. 5:139–147 (2003).

    PubMed  CAS  Google Scholar 

  2. J. M. Reichert and C. Paquette. Clinical development of therapeutic recombinant proteins. Biotechniques 35:176–178, 180, 182–185 (2003).

    Google Scholar 

  3. L. M. Weiner. Fully human therapeutic monoclonal antibodies. J. Immunother. 29:1–9 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. T. Burgess, A. Coxon, S. Meyer, J. Sun, K. Rex, T. Tsuruda, Q. Chen, S. Y. Ho, L. Li, S. Kaufman, K. McDorman, R. C. Cattley, J. Sun, G. Elliott, K. Zhang, X. Feng, X. C. Jia, L. Green, R. Radinsky, and R. Kendall. Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Res. 66:1721–1729 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. G. Orive, R. M. Hernandez, A. Rodriguez Gascon, A. Dominguez-Gil, and J. L. Pedraz. Drug delivery in biotechnology: present and future. Curr. Opin. Biotechnol. 14:659–664 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. W. C. Shen. Oral peptide and protein delivery: unfulfilled promises? Drug. Discov. Today 8:607–608 (2003).

    Article  PubMed  Google Scholar 

  7. J. Blanchette, N. Kavimandan, and N. A. Peppas. Principles of transmucosal delivery of therapeutic agents. Biomed. Pharmacother. 58:142–151 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. M. Goldberg and I. Gomez-Orellana. Challenges for the oral delivery of macromolecules. Nat. Rev. Drug Discov. 2:289–295 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. J. H. Hamman, G. M. Enslin, and A. F. Kotze. Oral delivery of peptide drugs: barriers and developments. BioDrugs 19:165–177 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. S. Senel, M. Kremer, K. Nagy, and C. Squier. Delivery of bioactive peptides and proteins across oral (buccal) mucosa. Curr. Pharm. Biotechnol. 2:175–186 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. W. Wang. Oral protein drug delivery. J. Drug Target 4:195–232 (1996).

    Article  PubMed  CAS  Google Scholar 

  12. A. Widera, K. J. Kim, E. D. Crandall, and W. C. Shen. Transcytosis of GCSF-transferrin across rat alveolar epithelial cell monolayers. Pharm. Res. 20:1231–1238 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. A. Widera, F. Norouziyan, and W. C. Shen. Mechanisms of TfR-mediated transcytosis and sorting in epithelial cells and applications toward drug delivery. Adv. Drug Deliv. Rev. 55:1439–1466 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. J. Wan, M. E. Taub, D. Shah, and W. C. Shen. Brefeldin A enhances receptor-mediated transcytosis of transferrin in filter-grown Madin–Darby canine kidney cells. J. Biol. Chem. 267:13446–13450 (1992).

    PubMed  CAS  Google Scholar 

  15. D. Shah and W. C. Shen. The establishment of polarity and enhanced transcytosis of transferrin receptors in enterocyte-like Caco-2 cells. J. Drug Target 2:93–99 (1994).

    Article  PubMed  CAS  Google Scholar 

  16. A. Widera, K. Beloussow, K. J. Kim, E. D. Crandall, and W. C. Shen. Phenotype-dependent synthesis of transferrin receptor in rat alveolar epithelial cell monolayers. Cell Tissue Res. 312:313–318 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. C. Q. Xia, J. Wang, and W. C. Shen. Hypoglycemic effect of insulin-transferrin conjugate in streptozotocin-induced diabetic rats. J. Pharmacol. Exp. Ther. 295:594–600 (2000).

    PubMed  CAS  Google Scholar 

  18. C. Q. Xia and W. C. Shen. Tyrphostin-8 enhances transferrin receptor-mediated transcytosis in Caco-2-cells and inreases hypoglycemic effect of orally administered insulin-transferrin conjugate in diabetic rats. Pharm. Res. 18:191–195 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. A. Widera, Y. Bai, and W. C. Shen. The transepithelial transport of a G-CSF-transferrin conjugate in Caco-2 cells and its myelopoietic effect in BDF1 mice. Pharm. Res. 21:278–284 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. Y. Bai, D. K. Ann, and W. C. Shen. Recombinant granulocyte colony-stimulating factor-transferrin fusion protein as an oral myelopoietic agent. Proc. Natl. Acad. Sci. USA 102:7292–7296 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. P. Argos. An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J. Mol. Biol. 211:943–958 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. C. R. Robinson and R. T. Sauer. Optimizing the stability of single-chain proteins by linker length and composition mutagenesis. Proc. Natl. Acad. Sci. USA 95:5929–5934 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. J. S. Huston, M. S. Tai, J. McCartney, P. Keck, and H. Oppermann. Antigen recognition and targeted delivery by the single-chain Fv. Cell. Biophys. 22:189–224 (1993).

    PubMed  CAS  Google Scholar 

  24. Y. Maeda, H. Ueda, J. Kazami, G. Kawano, E. Suzuki, and T. Nagamune. Engineering of functional chimeric protein G-Vargula luciferase. Anal. Biochem. 249:147–152 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. R. Arai, H. Ueda, A. Kitayama, N. Kamiya, and T. Nagamune. Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng. 14:529–532 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. N. Jullien, F. Sampieri, A. Enjalbert, and J. P. Herman. Regulation of Cre recombinase by ligand-induced complementation of inactive fragments. Nucleic Acids Res. 31:e131 (2003).

    Article  PubMed  Google Scholar 

  27. M. Maeda, K. Kawasaki, Y. Mu, H. Kamada, Y. Tsutsumi, T. J. Smith, and T. Mayumi. Amino acids and peptides. XXXIII. A bifunctional poly(ethylene glycol) hybrid of laminin-related peptides. Biochem. Biophys. Res. Commun. 248:485–489 (1998).

    Article  PubMed  CAS  Google Scholar 

  28. W. L. Farrar and A. Harel-Bellan. Myeloid growth factor(s) regulation of ornithine decarboxylase: effects of antiproliferative signals interferon-gamma and cAMP. Blood 73:1468–1475 (1989).

    PubMed  CAS  Google Scholar 

  29. W. Scher, Y. Eto, D. Ejima, T. Den, and I. A. Svet-Moldavsky. Phorbol ester-treated human acute myeloid leukemia cells secrete G-CSF, GM-CSF and erythroid differentiation factor into serum-free media in primary culture. Biochim. Biophys. Acta 1055:278–286 (1990).

    Article  PubMed  CAS  Google Scholar 

  30. V. Bocci. Factors affecting protein iodination using chloramine T and the assessment of homogeneity of serum 131-I-proteins. Ital. J. Biochem. 18:346–375 (1969).

    PubMed  CAS  Google Scholar 

  31. S. J. Szarka, E. G. Sihota, H. R. Habibi, and S. Wong. Staphylokinase as a plasminogen activator component in recombinant fusion proteins. Appl. Environ. Microbiol. 65:506–513 (1999).

    PubMed  CAS  Google Scholar 

  32. Y. Cheng, O. Zak, P. Aisen, S. C. Harrison, and T. Walz. Structure of the human transferrin receptor-transferrin complex. Cell 116:565–576 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. W. Halpern, T. A. Riccobene, H. Agostini, K. Baker, D. Stolow, M. L. Gu, J. Hirsch, A. Mahoney, J. Carrell, E. Boyd, and K. J. Grzegorzewski. Albugranin, a recombinant human granulocyte colony stimulating factor (G-CSF) genetically fused to recombinant human albumin induces prolonged myelopoietic effects in mice and monkeys. Pharm. Res. 19:1720–1729 (2002).

    Article  PubMed  CAS  Google Scholar 

  34. M. Koenigsmann, K. Jentsch-Ullrich, M. Mohren, E. Becker, M. Heim, and A. Franke. The role of diagnosis in patients failing peripheral blood progenitor cell mobilization. Transfusion 44:777–784 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. James Ihle, St. Jude's Children's Research Center, Memphis, TN, for the generous gift of the NFS-60 cell line and Dr. David K. Ann for his helpful discussion. This work was supported in part by NIH grants GM063647 and HL064365.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Chiang Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, Y., Shen, WC. Improving the Oral Efficacy of Recombinant Granulocyte Colony-Stimulating Factor and Transferrin Fusion Protein by Spacer Optimization. Pharm Res 23, 2116–2121 (2006). https://doi.org/10.1007/s11095-006-9059-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9059-5

Key words

Navigation