Skip to main content

Advertisement

Log in

Pharmacokinetics and Pharmacodynamics of Nonsteroidal Androgen Receptor Ligands

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Testosterone and structurally related anabolic steroids have been used to treat hypogonadism, muscle wasting, osteoporosis, male contraception, cancer cachexia, anemia, and hormone replacement therapy in aging men or age-related frailty; while antiandrogens may be useful for treatment of conditions like acne, alopecia (male-pattern baldness), hirsutism, benign prostatic hyperplasia (BPH) and prostate cancer. However, the undesirable physicochemical and pharmacokinetic properties of steroidal androgen receptor (AR) ligands limited their clinical use. Nonsteroidal AR ligands with improved pharmacological and pharmacokinetic properties have been developed to overcome these problems. This review focuses on the pharmacokinetics, metabolism, and pharmacology of clinically used and emerging nonsteroidal AR ligands, including antagonists, agonists, and selective androgen receptor modulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Gao, C. E. Bohl, and J. T. Dalton. Chemistry and structural biology of androgen receptor. Chem. Rev. 105:3352–3370 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. R. C. Buijsman, P. H. Hermkens, R. D. van Rijn, H. T. Stock, and N. M. Teerhuis. Non-steroidal steroid receptor modulators. Curr. Med. Chem. 12:1017–1075 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. J. Chen, J. Kim, and J. T. Dalton. Discovery and therapeutic promise of selective androgen receptor modulators. Mol. Interv. 5:173–188 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. S. Venturoli, O. Marescalchi, F. M. Colombo, S. Macrelli, B. Ravaioli, A. Bagnoli, R. Paradisi, and C. Flamigni. A prospective randomized trial comparing low dose flutamide, finasteride, ketoconazole, and cyproterone acetate-estrogen regimens in the treatment of hirsutism. J. Clin. Endocrinol. Metab. 84:1304–1310 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. E. T. Keller, W. B. Ershler, and C. Chang. The androgen receptor: a mediator of diverse responses. Front Biosci. 1:d59–d71 (1996).

    PubMed  CAS  Google Scholar 

  6. L. S. Goodman, J. G. Hardman, L. E. Limbird, and A. G. Gilman. Goodman & Gilman's the Pharmacological Basis of Therapeutics. McGraw-Hill Medical Pub. Division, New York, 2001.

    Google Scholar 

  7. K. L. Johansen. Testosterone metabolism and replacement therapy in patients with end-stage renal disease. Semin. Dial. 17:202–208 (2004).

    Article  PubMed  Google Scholar 

  8. M. Oettel. Testosterone metabolism, dose-response relationships and receptor polymorphisms: selected pharmacological/toxicological considerations on benefits versus risks of testosterone therapy in men. Aging Male 6:230–256 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. M. Oettel. Is there a role for estrogens in the maintenance of men's health? Aging Male 5:248–257 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. W. de Ronde, H. A. Pols, J. P. van Leeuwen, and F. H. de Jong. The importance of oestrogens in males. Clin. Endocrinol. (Oxf) 58:529–542 (2003).

    Article  Google Scholar 

  11. E. Barrett-Connor, D. Goodman-Gruen, and B. Patay. Endogenous sex hormones and cognitive function in older men. J. Clin. Endocrinol. Metab. 84:3681-3685 (1999).

    Article  PubMed  CAS  Google Scholar 

  12. I. Van Pottelbergh, L. Braeckman, D. De Bacquer, G. De Backer, and J. M. Kaufman. Differential contribution of testosterone and estradiol in the determination of cholesterol and lipoprotein profile in healthy middle-aged men. Atherosclerosis 166:95–102 (2003).

    Article  PubMed  Google Scholar 

  13. T. K. Mukherjee, H. Dinh, G. Chaudhuri, and L. Nathan. Testosterone attenuates expression of vascular cell adhesion molecule-1 by conversion to estradiol by aromatase in endothelial cells: implications in atherosclerosis. Proc. Natl. Acad. Sci. USA 99:4055–4060 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. K. Toda, T. Okada, K. Takeda, S. Akira, T. Saibara, M. Shiraishi, S. Onishi, and Y. Shizuta. Oestrogen at the neonatal stage is critical for the reproductive ability of male mice as revealed by supplementation with 17beta-oestradiol to aromatase gene (Cyp19) knockout mice. J. Endocrinol. 168:455–463 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. A. Falahati-Nini, B. L. Riggs, E. J. Atkinson, W. M. O'Fallon, R. Eastell, and S. Khosla. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J. Clin. Invest. 106:1553–1560 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. E. S. Orwoll. Men, bone and estrogen: unresolved issues. Osteoporos. Int. 14:93–98 (2003).

    PubMed  CAS  Google Scholar 

  17. A. E. Thigpen, R. I. Silver, J. M. Guileyardo, M. L. Casey, J. D. McConnell, and D. W. Russell. Tissue distribution and ontogeny of steroid 5 alpha-reductase isozyme expression. J. Clin. Invest 92:903–910 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. A. M. Isidori, E. A. Greco, and A. Aversa. Androgen deficiency and hormone-replacement therapy. BJU Int. 96:212–216 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. H. Fang, W. Tong, W. S. Branham, C. L. Moland, S. L. Dial, H. Hong, Q. Xie, R. Perkins, W. Owens, and D. M. Sheehan. Study of 202 natural, synthetic, and environmental chemicals for binding to the androgen receptor. Chem. Res. Toxicol. 16:1338–1358 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. W. R. Kelce, E. Monosson, M. P. Gamcsik, S. C. Laws, and L. E. Gray, Jr. Environmental hormone disruptors: evidence that vinclozolin developmental toxicity is mediated by antiandrogenic metabolites. Toxicol. Appl. Pharmacol. 126:276–285 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. C. L. Waller, B. W. Juma, L. E. Gray, Jr., and W. R. Kelce. Three-dimensional quantitative structure–activity relationships for androgen receptor ligands. Toxicol. Appl. Pharmacol. 137:219–227 (1996).

    Article  PubMed  CAS  Google Scholar 

  22. A. E. Wakeling, B. J. Furr, A. T. Glen, and L. R. Hughes. Receptor binding and biological activity of steroidal and nonsteroidal antiandrogens. J. Steroid Biochem. 15:355–359 (1981).

    Article  PubMed  CAS  Google Scholar 

  23. M. Schulz, A. Schmoldt, F. Donn, and H. Becker. The pharmacokinetics of flutamide and its major metabolites after a single oral dose and during chronic treatment. Eur. J. Clin. Pharmacol. 34:633–636 (1988).

    Article  PubMed  CAS  Google Scholar 

  24. B. Katchen and S. Buxbaum. Disposition of a new, nonsteroid, antiandrogen, alpha,alpha,alpha-trifluoro-2-methyl-4′-nitro-m-propionotoluidide (Flutamide), in men following a single oral 200 mg dose. J. Clin. Endocrinol. Metab. 41:373–379 (1975).

    Article  PubMed  CAS  Google Scholar 

  25. D. Fau, D. Eugene, A. Berson, P. Letteron, B. Fromenty, C. Fisch, and D. Pessayre. Toxicity of the antiandrogen flutamide in isolated rat hepatocytes. J. Pharmacol. Exp. Ther. 269:954–962 (1994).

    PubMed  CAS  Google Scholar 

  26. P. J. Creaven, L. Pendyala, and D. Tremblay. Pharmacokinetics and metabolism of nilutamide. Urology 37:13–19 (1991).

    Article  PubMed  CAS  Google Scholar 

  27. A. Berson, C. Wolf, V. Berger, D. Fau, C. Chachaty, B. Fromenty, and D. Pessayre. Generation of free radicals during the reductive metabolism of the nitroaromatic compound, nilutamide. J. Pharmacol. Exp. Ther. 257:714–719 (1991).

    PubMed  CAS  Google Scholar 

  28. D. Fau, A. Berson, D. Eugene, B. Fromenty, C. Fisch, and D. Pessayre. Mechanism for the hepatotoxicity of the antiandrogen, nilutamide. Evidence suggesting that redox cycling of this nitroaromatic drug leads to oxidative stress in isolated hepatocytes. J. Pharmacol. Exp. Ther. 263:69–77 (1992).

    PubMed  CAS  Google Scholar 

  29. I. D. Cockshott. Bicalutamide: clinical pharmacokinetics and metabolism. Clin. Pharmacokinet. 43:855–878 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. G. W. Boyle, D. McKillop, P. J. Phillips, J. R. Harding, R. Pickford, and A. D. McCormick. Metabolism of Casodex in laboratory animals. Xenobiotica 23:781–798 (1993).

    Article  PubMed  CAS  Google Scholar 

  31. D. McKillop, G. W. Boyle, I. D. Cockshott, D. C. Jones, P. J. Phillips, and R. A. Yates. Metabolism and enantioselective pharmacokinetics of Casodex in man. Xenobiotica 23:1241–1253 (1993).

    Article  PubMed  CAS  Google Scholar 

  32. P. Schellhammer, R. Sharifi, N. Block, M. Soloway, P. Venner, A. L. Patterson, M. Sarosdy, N. Vogelzang, J. Jones, and G. Kolvenbag. A controlled trial of bicalutamide versus flutamide, each in combination with luteinizing hormone-releasing hormone analogue therapy, in patients with advanced prostate cancer. Casodex Combination Study Group. Urology 45:745–752 (1995).

    Article  PubMed  CAS  Google Scholar 

  33. B. J. Furr and H. Tucker. The preclinical development of bicalutamide: pharmacodynamics and mechanism of action. Urology 47:13–25; discussion 29–32 (1996).

    Article  PubMed  CAS  Google Scholar 

  34. M. Lefort, M. Diaz Curiel, M. T. Carrascal, C. Mendez-Davila, and C. de la Piedra. Comparative effects of bicalutamide (Casodex) versus orchidectomy on bone mineral density, bone remodelling, and bone biomechanics in healthy rats. Urol. Int. 74:301–307 (2005).

    Article  PubMed  CAS  Google Scholar 

  35. T. Battmann, C. Branche, F. Bouchoux, E. Cerede, D. Philibert, F. Goubet, G. Teutsch, and M. Gaillard-Kelly. Pharmacological profile of RU 58642, a potent systemic antiandrogen for the treatment of androgen-dependent disorders. J. Steroid Biochem. Mol. Biol. 64:103–111 (1998).

    Article  PubMed  CAS  Google Scholar 

  36. M. E. Taplin, B. Rajeshkumar, S. Halabi, C. P. Werner, B. A. Woda, J. Picus, W. Stadler, D. F. Hayes, P. W. Kantoff, N. J. Vogelzang, and E. J. Small. Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. J. Clin. Oncol. 21:2673–2678 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. H. Suzuki, K. Akakura, A. Komiya, S. Aida, S. Akimoto, and J. Shimazaki. Codon 877 mutation in the androgen receptor gene in advanced prostate cancer: relation to antiandrogen withdrawal syndrome. Prostate 29:153–158 (1996).

    Article  PubMed  CAS  Google Scholar 

  38. T. Hara, J. Miyazaki, H. Araki, M. Yamaoka, N. Kanzaki, M. Kusaka, and M. Miyamoto. Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res. 63:149–153 (2003).

    PubMed  CAS  Google Scholar 

  39. T. Yoshida, H. Kinoshita, T. Segawa, E. Nakamura, T. Inoue, Y. Shimizu, T. Kamoto, and O. Ogawa. Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient. Cancer Res. 65:9611–9616 (2005).

    Article  PubMed  CAS  Google Scholar 

  40. M. E. Salvati, M. Gottardis, S. R. Krystek, R. M. Attar, and J. Sack. Selective androgen receptor modulators and methods for their identification, design, and use, Patent WO0200617, 2002.

  41. M. E. Salvati, A. Balog, W. Shan, D. D. Wei, D. Pickering, R. M. Attar, J. Geng, C. A. Rizzo, M. M. Gottardis, R. Weinmann, S. R. Krystek, J. Sack, Y. An, and K. Kish. Structure based approach to the design of bicyclic-1H-isoindole-1,3(2H)-dione based androgen receptor antagonists. Bioorg. Med. Chem. Lett. 15:271–276 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. M. E. Van Dort and Y. W. Jung. Synthesis and structure–activity studies of side-chain derivatized arylhydantoins for investigation as androgen receptor radioligands. Bioorg. Med. Chem. Lett. 11:1045–1047 (2001).

    Article  PubMed  Google Scholar 

  43. T. Battmann, A. Bonfils, C. Branche, J. Humbert, F. Goubet, G. Teutsch, and D. Philibert. RU 58841, a new specific topical antiandrogen: a candidate of choice for the treatment of acne, androgenetic alopecia and hirsutism. J. Steroid Biochem. Mol. Biol. 48:55–60 (1994).

    Article  PubMed  CAS  Google Scholar 

  44. D. Cousty-Berlin, B. Bergaud, M. C. Bruyant, T. Battmann, C. Branche, and D. Philibert. Preliminary pharmacokinetics and metabolism of novel non-steroidal antiandrogens in the rat: relation of their systemic activity to the formation of a common metabolite. J. Steroid Biochem. Mol. Biol. 51:47–55 (1994).

    Article  PubMed  CAS  Google Scholar 

  45. L. G. Hamann, R. I. Higuchi, L. Zhi, J. P. Edwards, X. N. Wang, K. B. Marschke, J. W. Kong, L. J. Farmer, and T. K. Jones. Synthesis and biological activity of a novel series of nonsteroidal, peripherally selective androgen receptor antagonists derived from 1,2-dihydropyridono[5,6-g]quinolines. J. Med. Chem. 41:623–639 (1998).

    Article  PubMed  CAS  Google Scholar 

  46. L. Zhi and E. Martinborough. Selective androgen receptor modulators (SARMs). Annual Reports of Medicinal Chemistry 36:169–180 (2001).

    CAS  Google Scholar 

  47. A. Negro-Vilar. Selective androgen receptor modulators (SARMs): a novel approach to androgen therapy for the new millennium. J. Clin. Endocrinol. Metab. 84:3459–3462 (1999).

    Article  PubMed  CAS  Google Scholar 

  48. L. G. Hamann, N. S. Mani, R. L. Davis, X. N. Wang, K. B. Marschke, and T. K. Jones. Discovery of a potent, orally active, nonsteroidal androgen receptor agonist: 4-ethyl-1,2,3,4-tetrahydro-6-(trifluoromethyl)-8-pyridono[5,6-g]-quinoline (LG121071). J. Med. Chem. 42:210–212 (1999).

    Article  PubMed  CAS  Google Scholar 

  49. J. Rosen and A. Negro-Vilar. Novel, non-steroidal, selective androgen receptor modulators (SARMs) with anabolic activity in bone and muscle and improved safety profile. J. Musculoskelet. Neuronal. Interact. 2:222–224 (2002).

    PubMed  CAS  Google Scholar 

  50. C. E. Bohl, C. Chang, M. L. Mohler, J. Chen, D. D. Miller, P. W. Swaan, and J. T. Dalton. A ligand-based approach to identify quantitative structure-activity relationships for the androgen receptor. J. Med. Chem. 47:3765–3776 (2004).

    Article  PubMed  CAS  Google Scholar 

  51. L. Zhi, C. M. Tegley, K. B. Marschke, and T. K. Jones. Switching androgen receptor antagonists to agonists by modifying C-ring substituents on piperidino[3,2-g]quinolinone. Bioorg. Med. Chem. Lett. 9:1009–10012 (1999).

    Article  PubMed  CAS  Google Scholar 

  52. D. Yin, W. Gao, J. D. Kearbey, H. Xu, K. Chung, Y. He, C. A. Marhefka, K. A. Veverka, D. D. Miller, and J. T. Dalton. Pharmacodynamics of selective androgen receptor modulators. J. Pharmacol. Exp. Ther. 304:1334–1340 (2003).

    Article  PubMed  CAS  Google Scholar 

  53. W. Gao, J. D. Kearbey, V. A. Nair, K. Chung, A. F. Parlow, D. D. Miller, and J. T. Dalton. Comparison of the pharmacological effects of a novel selective androgen receptor modulator, the 5alpha-reductase inhibitor finasteride, and the antiandrogen hydroxyflutamide in intact rats: new approach for benign prostate hyperplasia. Endocrinology 145:5420–5428 (2004).

    Article  PubMed  CAS  Google Scholar 

  54. W. Gao, P. J. Reiser, C. C. Coss, M. A. Phelps, J. D. Kearbey, D. D. Miller, and J. T. Dalton. Selective androgen receptor modulator treatment improves muscle strength and body composition and prevents bone loss in orchidectomized rats. Endocrinology 146:4887–4897 (2005).

    Article  PubMed  CAS  Google Scholar 

  55. J. D. Kearbey, W. Gao, D. D. Miller, and J. T. Dalton. Selective androgen receptor modulators inhibit bone resorption in rats. AAPS PharmSci. 5:(2003).

  56. J. Chen, D. J. Hwang, C. E. Bohl, D. D. Miller, and J. T. Dalton. A selective androgen receptor modulator for hormonal male contraception. J. Pharmacol. Exp. Ther. 312:546–553 (2005).

    Article  PubMed  CAS  Google Scholar 

  57. J. Kim, D. Wu, D. J. Hwang, D. D. Miller, and J. T. Dalton. The para substituent of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-prop ionamides is a major structural determinant of in vivo disposition and activity of selective androgen receptor modulators. J. Pharmacol. Exp. Ther. 315:230–239 (2005).

    Article  PubMed  CAS  Google Scholar 

  58. J. D. Kearbey, D. Wu, W. Gao, D. D. Miller, and J. T. Dalton. Pharmacokinetics of S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide in rats, a non-steroidal selective androgen receptor modulator. Xenobiotica 34:273–280 (2004).

    Article  PubMed  CAS  Google Scholar 

  59. W. Gao, J. S. Johnston, D. D. Miller, and J. T. Dalton. Inter-Species Differences in Pharmacokinetics and Metabolism of S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide: the role of N-Acetyltransferase. Drug. Metab. Dispos. (2005).

  60. W. Gao, Z. Wu, C. E. Bohl, J. Yang, D. D. Miller, and J. T. Dalton. Characterization of the in vitro metabolism of selective androgen receptor modulator (SARM) using human, rat and dog liver enzyme preparations. Drug Metab. Dispos. (2005).

  61. W. Gao, Z. Wu, K. Chung, D. D. Miller, and J. T. Dalton. Phase I Metabolism Study of Selective Androgen Receptor Modulators (SARMs) with human liver microsomes. AAPS PharmSci. 5 (2003).

  62. D. Yin, Y. He, M. A. Perera, S. S. Hong, C. Marhefka, N. Stourman, L. Kirkovsky, D. D. Miller, and J. T. Dalton. Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor. Mol. Pharmacol. 63:211–223 (2003).

    Article  PubMed  CAS  Google Scholar 

  63. J. Chen, D. J. Hwang, K. Chung, C. E. Bohl, S. J. Fisher, D. D. Miller, and J. T. Dalton. In vitro and in vivo structure–activity relationships of novel androgen receptor ligands with multiple substituents in the B-ring. Endocrinology 146:5444–5454 (2005).

    Article  PubMed  CAS  Google Scholar 

  64. C. A. Marhefka, W. Gao, K. Chung, J. Kim, Y. He, D. Yin, C. Bohl, J. T. Dalton, and D. D. Miller. Design, synthesis, and biological characterization of metabolically stable selective androgen receptor modulators. J. Med. Chem. 47:993–998 (2004).

    Article  PubMed  CAS  Google Scholar 

  65. C. E. Bohl, D. D. Miller, J. Chen, C. E. Bell, and J. T. Dalton. Structural basis for accommodation of nonsteroidal ligands in the androgen receptor. J. Biol. Chem. 280:37747–37754 (2005).

    Article  PubMed  CAS  Google Scholar 

  66. C. E. Bohl, W. Gao, D. D. Miller, C. E. Bell, and J. T. Dalton. Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc. Natl. Acad. Sci. USA 102:6201–6206 (2005).

    Article  PubMed  CAS  Google Scholar 

  67. L. G. Hamann. Discovery and preclinical profile of a highly potent and muscle selective androgen receptor modulator (SARM). 227th National Meeting of the American Chemical Society Medicinal Chemistry Division (2004).

  68. K. Hanada, K. Furuya, N. Yamamoto, H. Nejishima, K. Ichikawa, T. Nakamura, M. Miyakawa, S. Amano, Y. Sumita, and N. Oguro. Bone anabolic effects of S-40503, a novel nonsteroidal selective androgen receptor modulator (SARM), in rat models of osteoporosis. Biol. Pharm. Bull. 26:1563–1569 (2003).

    Article  PubMed  CAS  Google Scholar 

  69. M. Miyakawa, N. Oguro, K. Hanada, K. Furuya, and N. Yamamoto. Preparation of novel tetrahydroquinoline derivatives as androgen receptor agonists, Patent WO 2004013104, 2004.

  70. H. Gronemeyer, J. A. Gustafsson, and V. Laudet. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov. 3:950–964 (2004).

    Article  PubMed  CAS  Google Scholar 

  71. C. L. Smith and B. W. O'Malley. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr. Rev. 25:45–71 (2004).

    Article  PubMed  CAS  Google Scholar 

  72. B. S. Katzenellenbogen and J. A. Katzenellenbogen. Biomedicine. Defining the “S” in SERMs. Science 295:2380–2381 (2002).

    Article  PubMed  CAS  Google Scholar 

  73. R. G. Christiansen, M. R. Bell, T. E. D'Ambra, J. P. Mallamo, J. L. Herrmann, J. H. Ackerman, C. J. Opalka, R. K. Kullnig, R. C. Winneker, and B. W. Snyder et al. Antiandrogenic steroidal sulfonylpyrazoles. J. Med. Chem. 33:2094–2100 (1990).

    Article  PubMed  CAS  Google Scholar 

  74. I. D. Cockshott, G. F. Plummer, K. J. Cooper, and M. J. Warwick. The pharmacokinetics of Casodex in laboratory animals. Xenobiotica 21:1347–1355 (1991).

    PubMed  CAS  Google Scholar 

  75. J. P. Edwards, R. I. Higuchi, T. K. Jones, and L. G. Hamann. Androgen receptor modulator compounds and methods, Patent US6017924, Ligand Pharmaceuticals Incorporated, United States, 2000.

  76. G. F. Allan, and Z. Sui. Therapeutic androgen receptor ligands. NURSA e-Journal 1: ID# 3.09172003.1 (2003).

  77. L. Zhi, C. M. Tegley, B. Pio, V. O. C. Arjan, M. Motamedi, E. Martinborough, S. West, R. I. Higuchi, L. G. Hamann, and L. J. Farmer. Bicyclic androgen and progesterone receptor modulator compounds and methods, Patent WO0116108, 2001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Dalton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, W., Kim, J. & Dalton, J.T. Pharmacokinetics and Pharmacodynamics of Nonsteroidal Androgen Receptor Ligands. Pharm Res 23, 1641–1658 (2006). https://doi.org/10.1007/s11095-006-9024-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9024-3

Key Words

Navigation