Skip to main content
Log in

Involvement of Recognition and Interaction of Carnitine Transporter in the Decrease of l-Carnitine Concentration Induced by Pivalic Acid and Valproic Acid

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Prodrugs with pivalic acid and valproic acid decrease l-carnitine concentration in plasma and tissues by urinary excretion of acylcarnitine as pivaloylcarnitine (PC) and valproylcarnitine (VC), respectively. We investigated the role of the Na+/l-carnitine cotransporter in the porcine kidney epithelial cell line, LLC-PK1 for the decrease of l-carnitine concentration.

Methods

The uptake of l-[3H]carnitine, acetyl-l-[3H]carnitine (AC), l-[3H]PC and l-[3H]VC were investigated in LLC-PK1 cells seeded in a 6-well culture plate.

Results

l-Carnitine and AC uptake in LLC-PK1 cells exhibited Na+ dependency. The K m values for l-carnitine and AC uptake were 11.0 and 8.18 μM, respectively. These results indicated expression of Na+/l-carnitine cotransporter in LLC-PK1 cells. PC and VC inhibited Na+/l-carnitine cotransporter in the competitive (K i = 90.4 μM) and noncompetitive (K i = 41.6 μM) manners, respectively. PC and VC uptake by Na+/l-carnitine cotransporter were not observed in LLC-PK1 cells.

Conclusions

These data suggested that PC and VC formed in the body could not be reabsorbed in the kidney, resulting in the decrease of l-carnitine concentration. In addition, inhibition of l-carnitine reabsorption by VC with lower K i value could induce the decrease of l-carnitine concentration. Collectively, the recognition and interaction of Na+/l-carnitine cotransporter are important factors for carnitine homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AC:

acetyl-l-carnitine

PC:

pivaloylcarnitine

VC:

valproylcarnitine

References

  1. L. L. Bieber. Carnitine. Ann. Rev. Biochem. 57:261–283 (1988).

    Article  PubMed  CAS  Google Scholar 

  2. C. J. Rebouche, and D. L. Mack. Sodium gradient-stimulated transport of l-carnitine into brush border membrane vesicles: kinetics, specificity, and regulation by dietary carnitine. Arch. Biochem. Biophys. 235:393–402 (1984).

    Article  PubMed  CAS  Google Scholar 

  3. B. Stieger, B. O'Neill, and S. Krähenbühl. Characterization of l-carnitine transport by rat kidney brush-border-membrane vesicles. Biochem. J. 309:643–647 (1995).

    PubMed  CAS  Google Scholar 

  4. A. Marzo, A. E. Martelli, A. Mancinelli, G. Cardace, C. Corbelletta, E. Bassani, and M. Solbiati. Protein binding of l-carnitine family components. Eur. J. Drug Metab. Pharmacokinet. 3:364–368 (1991).

    Google Scholar 

  5. I. Tamai, R. Ohashi, J. Nezu, H. Yabuuchi, A. Oku, M. Shimane, Y. Sai, and A. Tsuji. Molecular and functional identification of sodium ion-dependent, high affinity human catnitine transporter OCTN2. J. Biol. Chem. 273:20378–20382 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. X. Wu, P. D. Prasad, F. H. Leibach, and V. Ganapathy. cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem. Biophys. Res. Commun. 246:589–595 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. J. Nezu, I. Tamai, A. Oku, R. Ohashi, H. Yabuuchi, N. Hashimoto, H. Nikaido, Y. Sai, A. Koizumi, Y. Shoji, G. Takada, T. Matsuishi, M. Yoshino, H. Kato, T. Ohura, G. Tsujimoto, J. Hayakawa, M. Shimane, and A. Tsuji. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat. Genet. 21:91–94 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. Y. Wang, J. Ye, V. Ganapathy and N. Longo. Mutations in the organic cation/carnitine transporter OCTN2 in primary carnitine deficiency. Proc. Natl. Acad. Sci. USA 96:2356–2360 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. C. J. Rebouche. Carnitine metabolism and its regulation in microorganisms and mammals. Annu. Rev. Nutr. 18:39–61 (1998).

    Article  PubMed  CAS  Google Scholar 

  10. A. Marzo, E. Arrigoni Martelli, R. Urso, M. Rocchetti, V. Rizza, and J. G. Kelly. Metabolism and disposition of intravenously administered acetyl-l-carnitine in healthy volunteers. Eur. J. Clin. Pharmacol. 37:59–63 (1989).

    PubMed  CAS  Google Scholar 

  11. A. Mancinelli, A. Longo, K. Shanahan, and A. M. Evans. Disposition of l-carnitine and acetyl-l-carnitine in the isolated perfused rat kidney. J. Pharmacol. Exp. Ther. 274:1122–1128 (1995).

    PubMed  CAS  Google Scholar 

  12. R. Ohashi, I. Tamai, H. Yabuuchi, J. Nezu, A. Oku, Y. Sai, M. Shimane, and A. Tsuji. Na+-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J. Pharmacol. Exp. Ther. 291:778–784 (1999).

    PubMed  CAS  Google Scholar 

  13. E. P. Brass, M. D. Mayer, D. J. Mulford, T. K. Stickler, and C. L. Hoppel. Impact on carnitine homeostasis of short-term treatment with the pivalate prodrug cefditoren pivoxil. Clin. Pharmacol. Ther. 73:338–347 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. E. Holme, J. Greter, C. E. Jacobson, S. Lindstedt, I. Nordin, B. Kristiansson, and U. Jodal. Carnitine deficiency induced by pivampicillin and pivmecillinam therapy. Lancet 2:469–473 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. B. Melegh, J. Kerner, and L. L. Bieber. Pivampicillin-promoted excretion of pivaloylcarnitine in humans. Biochem. Pharmacol. 36:3405–3409 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. K. Shimizu, A. Saito, J. Shimada, M. Ohmichi, Y. Hiraga, T. Inamatsu, K. Shimada, M. Tanimura, Y. Fujita, T. Nishikawa, T. Oguma, and S. Yamamoto. Carnitine status and safety after administration of S-1108, a new oral cephem, to patients. Antimicrob. Agents Chemother. 37:1043–1049 (1993).

    PubMed  CAS  Google Scholar 

  17. T. Kanazu, and T. Yamaguchi. Comparison of in vitro carnitine and glycine conjugation with branched-side chain and cyclic side chain carboxylic acids in rats. Drug Metab. Dispos. 25:149–153 (1997).

    PubMed  CAS  Google Scholar 

  18. K. Mizojiri, S. Futaguchi, R. Norikura, Y. Katsuyama, T. Nagasaki, T. Yoshimori, and N. Nakanishi. Disposition of S-1108, a new oral cephem antibiotic, and metabolic fate of pivalic acid liberated from [pivaloyl-14C]S-1108 in rats and dogs. Antimicrob. Agents Chemother. 39:1445–1453 (1995).

    PubMed  CAS  Google Scholar 

  19. K. Totsuka, K. Shimizu, M. Konishi, and S. Yamamoto. Metabolism of S-1108, a new oral cephem antibiotic, and metabolic profiles of its metabolites in humans. Antimicrob. Agents Chemother. 36:757–761 (1992).

    PubMed  CAS  Google Scholar 

  20. D. S. Millington, T. P. Bohan, C. R. Roe, A. L. Yergey, and D. J. Liberato. Valproylcarnitine: a novel drug metabolite identified by fast atom bombardment and thermospray liquid chromatography-mass spectrometry. Clin. Chim. Acta 145:69–76 (1985).

    Article  PubMed  CAS  Google Scholar 

  21. Y. Ohtani, F. Endo, and I. Matsuda. Carnitine deficiency and hyperammonemia associated with valproic acid therapy. J. Pediatr. 101:782–785 (1982).

    Article  PubMed  CAS  Google Scholar 

  22. J. P. Van Wouwe. Carnitine deficiency during valproic acid treatment. Int. J. Vitam. Nutr. Res. 65:211–214 (1995).

    PubMed  Google Scholar 

  23. K. Inui, H. Saito, and R. Hori. H+-gradient-dependent active transport of tetraethylammonium cation in apical-membrane vesicles isolated from kidney epithelial cell line LLC-PK1. Biochem. J. 277:199–203 (1985).

    Google Scholar 

  24. H. Saito, M. Yamamoto, K. Inui, and R. Hori. Transcellular transport of organic cation across monolayers of kidney epithelial cell line LLC-PK1. Am. J. Physiol. 262:C59–C66 (1992).

    PubMed  CAS  Google Scholar 

  25. S. Ohnishi, H. Saito, A. Fukada, and K. Inui. Independent organic cation transport activity of Na+-l-carnitine cotransport system in LLC-PK1 cells. Am. J. Physiol. 281:F273–F279 (2001).

    CAS  Google Scholar 

  26. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275 (1951).

    PubMed  CAS  Google Scholar 

  27. B. Melegh, J. Kerner, G. Kispal, G. Acsadi, and M. Dani. Effect of chronic valproic acid treatment on plasma and urine carnitine levels in children: decreased urinary excretion. Acta Pediatr. Hung. 28:137–142 (1987).

    CAS  Google Scholar 

  28. B. Melegh, J. Kerner, V. Jaszai, and L. L. Bieber. Differential excretion of xenobiotic acyl-esters of carnitine due to administration of pivampicillin and valproate. Biochem. Med. Metab. Biol. 43:30–38 (1990).

    Article  PubMed  CAS  Google Scholar 

  29. I. Tein, S. DiMauro, Z. W. Xie, and D. C. De Vivo. Valproic acid impairs carnitine uptake in cultured human skin fibroblasts. An in vitro model for the pathogenesis of valproic acid-associated carnitine deficiency. Pediatr. Res. 34:281–287 (1993).

    Article  PubMed  CAS  Google Scholar 

  30. P. Molstad, T. Bohmer, and K. Eiklid. Specificity and characteristics of the carnitine transport in human heart cells (CCL 27) in culture. Biochim. Biophys. Acta. 471:296–304 (1977).

    Article  PubMed  CAS  Google Scholar 

  31. J. Li, D. L. Norwood, L. F. Mao, and H. Schulz. Mitochondrial metabolism of valproic acid. Biochemistry 30:388–394 (1991).

    Article  PubMed  CAS  Google Scholar 

  32. T. Sugimoto, H. Muro, M. Woo, N. Nishida, and K. Murakami. Valproate metabolites in high-dose valproate plus phenytoin therapy. Epilepsia 12:1200–1203 (1996).

    Article  Google Scholar 

Download references

Acknowledgments

We cordially thank Yoshihiko Katsuyama and Katsunori Sakai in Shionogi & Co., Ltd. for synthesizing the labeled and unlabeled compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichi Ohnishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamura, N., Ohnishi, S., Shimaoka, H. et al. Involvement of Recognition and Interaction of Carnitine Transporter in the Decrease of l-Carnitine Concentration Induced by Pivalic Acid and Valproic Acid. Pharm Res 23, 1729–1735 (2006). https://doi.org/10.1007/s11095-006-9002-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9002-9

Key words

Navigation