Skip to main content
Log in

Interconversion Pharmacokinetics of Simvastatin and its Hydroxy Acid in Dogs: Effects of Gemfibrozil

Pharmaceutical Research Aims and scope Submit manuscript

Purpose

To characterize the pharmacokinetics of simvastatin (SV) and simvastatin acid (SVA), a lactone–acid pair known to undergo reversible metabolism, and to better understand mechanisms underlying pharmacokinetic interactions observed between SV and gemfibrozil.

Methods

Pharmacokinetic studies were conducted after intravenous administration of SV and SVA to dogs pretreated with a vehicle or gemfibrozil. In vitro metabolism of SVA in dog hepatocytes as well as in vitro hepatic and plasma conversion of SV/SVA were investigated in the absence and presence of gemfibrozil.

Results

In control animals, the irreversible elimination clearances of SV (CL10) and SVA (CL20) were 10.5 and 18.6 ml min−1 kg−1, respectively. The formation clearance of SVA from SV (CL12 = 4.8 ml min−1 kg−1) was 8-fold greater than that of SV from SVA (CL21 = 0.6 ml min−1 kg−1), and the recycled fraction was relatively minor (0.009). In gemfibrozil-treated animals, CL10 was essentially unchanged, whereas CL12, CL20, CL21, and recycled fraction were significantly decreased to 2.9, 9, 0.14 ml min−1 kg−1, and 0.003, respectively. In control dogs, values for real volume of distribution at steady state (Vss,real) of SV (2.3 L kg−1) were much larger than the corresponding values of SVA (0.3 L kg−1). Gemfibrozil treatment did not affect Vss,real of either SV or SVA. In dog hepatocytes, gemfibrozil modestly affected the formation of CYP3A-mediated oxidative metabolites (IC50 > 200 μM) and β-oxidative products (IC50 ∼100 μM), but markedly inhibited the glucuronidation-mediated lactonization of SVA and the glucuronidation of an SVA β-oxidation product (IC50 = 18 μM). In in vitro dog and human liver S9 and plasma, hydrolysis of SV to SVA was much faster than that of SVA to SV. Gemfibrozil (250 μM) had a minimal inhibitory effect on the hydrolysis of either SV to SVA or SVA to SV in dog and human liver S9, but had a significant (∼60%) inhibitory effect on the SV to SVA hydrolysis in both dog and human plasma.

Conclusions

In dogs, the interconversion process favored the formation of SVA and was less efficient than the irreversible elimination processes of SV and SVA. Treatment with gemfibrozil did not affect the distribution of SV/SVA, but rather affected the elimination of SVA and the SV/SVA interconversion processes. Gemfibrozil decreased CL20 and CL21 likely via its inhibitory effect on the glucuronidation of SVA, and not on the CYP3A-mediated oxidative metabolism of SV or SVA, the β-oxidation of SVA, nor the SVA to SV hydrolysis. The decrease in CL12 might be due in part to the inhibitory effect of gemfibrozil on SV to SVA hydrolysis in plasma. Similar rationales may also be applicable to studies in humans and/or other statin lactone–acid pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

CLapp:

apparent clearance

CLreal:

real clearance

CL10:

irreversible elimination clearance of SV

CL12:

formation clearance of SVA from SV

CL20:

irreversible elimination clearance of SVA

CL21:

formation clearance of SV from SVA

SV:

simvastatin

SVA:

simvastatin acid

RF:

recycled fraction

V ss,app :

apparent volume of distribution at steady state

V ss,real :

real volume of distribution at steady state

References

  1. V. F. Mauro (1993) ArticleTitleClinical pharmacokinetics and practical applications of simvastatin Clin. Pharmacokinet. 24 195–202

    Google Scholar 

  2. D. E. Duggan S. Vickers (1990) ArticleTitlePhysiological disposition of HMG-CoA-reductase inhibitors Drug Metab. Rev. 22 333–362

    Google Scholar 

  3. S. Vickers C. A. Duncan K. P. Vyas P. H. Kari B. Arison S. R. Prakash H. G. Ramjit S. M. Pitzenberger G. Stokker D. E. Duggan (1990) ArticleTitleIn vitro and in vivo biotransformation of simvastatin, an inhibitor of HMG CoA reductase Drug Metab. Dispos. 18 476–483

    Google Scholar 

  4. D. G. Le Couteur P. T. Martin P. Bracs A. Black R. Hayes T. Woolf R. Stern (1996) ArticleTitleMetabolism and excretion of [14C]-atorvastatin in patients with T-tube drainage Proc. Aust. Soc. Clin. Exp. Pharmacol. Toxicol. 3 153

    Google Scholar 

  5. M. Boberg R. Angerbauer W.K. Kanhai W. Karl A. Kern M. Radtke W. Steinke (1998) ArticleTitleBiotransformation of cerivastatin in mice, rats and dogs in vivo Drug Metab. Dispos. 26 640–652

    Google Scholar 

  6. D. W. Everett T. J. Chando G. C. Didonato S. M. Singhvi H. Y. Pan S. H. Weinstein (1999) ArticleTitleBiotransformation of pravastatin sodium in humans Drug Metab. Dispos. 19 740–748

    Google Scholar 

  7. A. E. Black R. N. Hayes B. D. Roth P. Woo T. F. Woolf (1999) ArticleTitleMetabolism and excretion of atorvastatin in rats and dogs Drug Metab. Dispos. 27 916–923

    Google Scholar 

  8. P. D. Martin M. J. Warwick A. L. Dane S. J. Hill P. B. Giles P. J. Phillips E. Lenz (2003) ArticleTitleMetabolism, excretion, and pharmacokinetics of rosuvastatin in healthy adult male volunteers Clin. Ther. 25 2822–2835

    Google Scholar 

  9. T. Prueksaritanont R. Subramanian X. Fang B. Ma Y. Qiu J. H. Lin P. G. Pearson T. A. Baillie (2001) ArticleTitleGlucuronidation of statins in animals and humans: a novel mechanism of statin lactonization Drug Metab. Dispos. 30 505–512

    Google Scholar 

  10. T. Prueksaritanont L. M. Gorham B. Ma L. Liu X. Yu J. J. Zhao D. E. Slaughter B. H. Arison K. P. Vyas (1997) ArticleTitleIn vitro metabolism of simvastatin in humans: identification of metabolizing enzymes and effect of the drug on hepatic P450s Drug Metab. Dispos. 25 1191–1199

    Google Scholar 

  11. T. Prueksaritanont B. Ma N. Yu (2003) ArticleTitleHuman hepatic metabolism of simvastatin hydroxy acid is mediated primarily by CYP3A, not CYP2D6 Br. J. Clin. Pharmacol. 56 120–124

    Google Scholar 

  12. W. Jacobson B. Kuhn A. Soldner G. Kirchner K.-F. Sewing P. A. Kollman L. Z. Benet U. Christians (2001) ArticleTitleLactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin Drug Metab. Dispos. 28 1369–1378

    Google Scholar 

  13. M. Boberg R. Angerbauer P. Fey W. K. Kanhai W. Karl A. Kern J. Ploschke M. Radtke (1997) ArticleTitleMetabolism of cerivastatin by human liver microsomes in vitro: characterization of primary metabolic pathways and cytochrome P450 isozymes involved Drug Metab. Dispos. 25 321–331

    Google Scholar 

  14. D. J. Rader S. M. Haffner (1999) ArticleTitleRoles of fibrates in the management of hypertriglyceridemia Am. J. Cardiol. 83 30F–35F

    Google Scholar 

  15. A. Shek M. J. Ferrill (2001) ArticleTitleStatin–fibrate combination therapy Ann. Pharmacother. 35 908–917

    Google Scholar 

  16. J. T. Backman C. Kyrklund K. T. Kivistö J.-S. Wang P. J. Neuvonen (2000) ArticleTitlePlasma concentrations of active simvastatin acid are increased by gemfibrozil Clin. Pharmacol. Ther. 68 122–129

    Google Scholar 

  17. J. T. Backman C. Kyrklund M. Neuvonen P. J. Neuvonen (2002) ArticleTitleGemfibrozil greatly increases plasma concentrations of cerivastatin Clin. Pharmacol. Ther. 72 685–691

    Google Scholar 

  18. C. Kyrklund J. T. Backman K. T. Kivistö M. Neuvonen J. Laitila P. J. Neuvonen (2001) ArticleTitlePlasma concentrations of active lovastatin acid are markedly increased by gemfibrozil but not by bezafibrate Clin. Pharmacol. Ther. 69 340–345

    Google Scholar 

  19. C. Kyrklund J. T. Backman M. Neuvonen P. J. Neuvonen (2003) ArticleTitleGemfibrozil increases plasma pravastatin concentrations and reduces pravastatin renal clearance Clin. Pharmacol. Ther. 73 538–544

    Google Scholar 

  20. T. Prueksaritanont J. Zhao B. Ma B. A. Roadcap C. Tang Y. Qiu L. Liu J. H. Lin P. G. Pearson T. A. Baillie (2002) ArticleTitleMechanistic studies on the metabolic interactions between gemfibrozil and statins J. Pharmacol. Exp. Ther. 301 1042–1051

    Google Scholar 

  21. J. J. DiStefano (1976) ArticleTitleConcepts, properties, measurement, and computation of clearance rates of hormones and other substances in biological systems Ann. Biomed. Eng. 4 302–319

    Google Scholar 

  22. J. G. Wagner A. R. DiSanto W. R. Gillespie K. S. Albert (1981) ArticleTitleReversible metabolism and pharmacokinetics: Application to prednisone and prednisolone Res. Commun. Chem. Pathol. Pharmacol. 32 387–405

    Google Scholar 

  23. W. F. Ebling W. J. Jusko (1986) ArticleTitleThe determination of essential clearance, volume, and residence time parameters of recirculating metabolic systems: the reversible metabolism of methylprednisolone and methylprednisone in rabbits J. Pharmacokin. Biopharm. 14 557–599

    Google Scholar 

  24. T. Prueksaritanont C. Tang Y. Qiu L. Mu R. Subramanain J. H. Lin (2002) ArticleTitleEffects of fibrates on metabolism of statins in human hepatocytes Drug Metab. Dispos. 30 1280–1287

    Google Scholar 

  25. H. Schulz (1987) ArticleTitleInhibitors of fatty acid oxidation Life Sci. 40 1443–1449

    Google Scholar 

  26. T. Prueksaritanont, K. M. Richards, Y. Qiu, K. Strong-Basalyga, A. Miller, C. Li, R. Eisenhandler, and E. J. Carlini. Comparative effects of fibrates on drug metabolizing enzymes in human hepatocytes. Pharm. Res. 22:71–78 (2005).

    Google Scholar 

  27. C. Hamberger J. Barre R. Zini A. Taiclet G. Houin J. P. Tillement (1986) ArticleTitleIn vitro binding study of gemfibrozil to human serum proteins and erythrocytes: interactions with other drugs Int. Clin. Pharm. Res. 6 441–449

    Google Scholar 

  28. M. G. Soars B. Burchell R. J. Riley (2002) ArticleTitleIn vitro analysis of human drug glucuronidation and prediction of in vivo metabolic clearance J. Pharmacol. Exp. Ther. 301 382–390

    Google Scholar 

  29. R. A. Okerholm F. J. Keeley F. E. Peterson A. J. Glazko (1976) ArticleTitleThe metabolism of gemfibrozil Proc. R. Soc. Med. 69 IssueIDSuppl. 2 11–14

    Google Scholar 

  30. S. Yoshihisa M. Hirano H. Satao Y. Sugiyama (2004) ArticleTitleGemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug–drug interaction between cerivastatin and gemfibrozil J. Pharmacol. Exp. Ther. 311 228–236

    Google Scholar 

  31. J. L. Lam L. Z. Benet (2004) ArticleTitleHepatic microsome studies are insufficient to characterize in vivo hepatic metabolic clearance and metabolic drug–drug interactions: studies of digoxin metabolism in primary rat hepatocytes versus microsomes Drug Metab. Dispos. 32 1311–1316

    Google Scholar 

  32. B. Hsiang Y. Zhu Z. Wang Y. Wu V. Sasseville W.-P. Yang T. G. Kirchgessner (1999) ArticleTitleA novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters J. Biol. Chem. 274 37161–37168

    Google Scholar 

  33. J. H. Hochman N. T. Pudvah Y. Qiu M. Yamazaki C. Tang J. H. Lin T. Prueksaritanont (2004) ArticleTitleInteractions of human P-glycoprotein with simvastatin, simvastatin acid, and atorvastatin Pharm. Res. 21 1688–1693

    Google Scholar 

  34. M. Yamazaki, B. Li, S. W. Louie, N. T. Pudvah, R. Stocco, W. Wong, M. Abramovitz, A. Demartis, R. Laufer, J. H. Hochman, T. Prueksaritanont, and J. H. Lin. Effects of fibrates on human organic anion-transporting polypeptide 1B1 (OATP2, OATP-C, SLC21A6)-, multidrug resistance protein 2 (MRP2/ABCC2)-, and P-glycoprotein (ABCB1)-mediated transport. Xenobiotica in press.

  35. A. J. Bergman G. Murphy J. Burke J. J. Zhao R. Valesky L. Liu K. C. Lasseter W. He T. Prueksaritanont Y. Qiu A. Hartford J. M. Vega J. F. Paolini (2004) ArticleTitleSimvastatin does not have a clinically significant pharmacokinetic interaction with fenofibrate in humans J. Clin. Pharmacol. 44 1054–1062

    Google Scholar 

Download references

Acknowledgments

We thank Ms. Y. Meng and Mr. Bennett Ma for analysis of plasma samples and Kristie Strong-Basalyga for assistance in hepatocyte isolation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomayant Prueksaritanont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prueksaritanont, T., Qiu, Y., Mu, L. et al. Interconversion Pharmacokinetics of Simvastatin and its Hydroxy Acid in Dogs: Effects of Gemfibrozil. Pharm Res 22, 1101–1109 (2005). https://doi.org/10.1007/s11095-005-6037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-6037-2

Key Words

Navigation