Skip to main content

Advertisement

Log in

Silibinin Inhibits Glioma Cell Proliferation via Ca2+/ROS/MAPK-Dependent Mechanism In Vitro and Glioma Tumor Growth In Vivo

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Anticancer activity of silibinin, a flavonoid, has been demonstrated in various cancer cell types. However, the underlying mechanism and in vivo efficacy in glioma were not elucidated. The present study was undertaken to determine the effect of silibinin on glioma cell proliferation in vitro and to examine whether silibinin inhibits tumor growth in vivo. Silibinin resulted in inhibition of proliferation in a dose- and time-dependent manner, which was largely attributed to cell death. Silibinin induced a transient increase in intracellular Ca2+ followed by an increase in reactive oxygen species (ROS) generation. The silibinin-induced cell death was prevented by EGTA, calpain inhibitor and antioxidants (N-acetylcysteine and Trolox). Western blot analysis showed that silibinin also induced ROS-dependent activation of extracellular signal-regulated kinase, p38 kinase, and c-Jun N-terminal kinase. Inhibitors of these kinases prevented the silibinin-induced cell death. Silibinin caused caspase activation and the silibinin-induced cell death was prevented by caspase inhibitors. Glioma cell migration was also decreased by silibinin treatment. Oral administration of silibinin in animals with subcutaneous U87MG glioma cells reduced tumor volume. Subsequent tumor tissue analysis showed a decrease in Ki-67 positive cells, an increase in TUNEL-positive cells, and caspase activation. These results indicate that silibinin induces a caspase-dependent cell death via Ca2+/ROS/MAPK-mediated pathway in vitro and inhibits glioma growth in vivo. These data suggest that silibinin may serve as a potential therapeutic agent for malignant human gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64(6):479–489

    PubMed  CAS  Google Scholar 

  2. DeAngelis LM (2001) Brain tumors. N Engl J Med 344(2):114–123. doi:10.1056/NEJM200101113440207

    Article  PubMed  CAS  Google Scholar 

  3. Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353(8):811–822. doi:10.1056/NEJMra043666

    Article  PubMed  CAS  Google Scholar 

  4. Kanadaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, Huang YT, Lee MT (2005) The antitumor activities of flavonoids. In Vivo 19(5):895–909

    PubMed  CAS  Google Scholar 

  5. Ren W, Qiao Z, Wang H, Zhu L, Zhang L (2003) Flavonoids: promising anticancer agents. Med Res Rev 23(4):519–534. doi:10.1002/med.10033

    Article  PubMed  CAS  Google Scholar 

  6. Fresco P, Borges F, Diniz C, Marques MP (2006) New insights on the anticancer properties of dietary polyphenols. Med Res Rev 26(6):747–766. doi:10.1002/med.20060

    Article  PubMed  CAS  Google Scholar 

  7. Braganhol E, Zamin LL, Canedo AD, Horn F, Tamajusuku AS, Wink MR, Salbego C, Battastini AM (2006) Antiproliferative effect of quercetin in the human U138MG glioma cell line. Anticancer Drugs 17(6):663–671. doi:10.1097/01.cad.0000215063.23932.02

    Article  PubMed  CAS  Google Scholar 

  8. Shen SC, Lin CW, Lee HM, Chien LL, Chen YC (2006) Lipopolysaccharide plus 12-o-tetradecanoylphorbol 13-acetate induction of migration and invasion of glioma cells in vitro and in vivo: differential inhibitory effects of flavonoids. Neuroscience 140(2):477–489. doi:10.1016/j.neuroscience.2006.02.028

    Article  PubMed  CAS  Google Scholar 

  9. Sharma V, Joseph C, Ghosh S, Agarwal A, Mishra MK, Sen E (2007) Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Mol Cancer Ther 6(9):2544–2553. doi:10.1158/1535-7163.MCT-06-0788

    Article  PubMed  CAS  Google Scholar 

  10. Singh RP, Gu M, Agarwal R (2008) Silibinin inhibits colorectal cancer growth by inhibiting tumor cell proliferation and angiogenesis. Cancer Res 68(6):2043–2050. doi:10.1158/0008-5472.CAN-07-6247

    Article  PubMed  CAS  Google Scholar 

  11. Singh RP, Mallikarjuna GU, Sharma G, Dhanalakshmi S, Tyagi AK, Chan DC, Agarwal C, Agarwal R (2004) Oral silibinin inhibits lung tumor growth in athymic nude mice and forms a novel chemocombination with doxorubicin targeting nuclear factor kappaB-mediated inducible chemoresistance. Clin Cancer Res 10(24):8641–8647. doi:10.1158/1078-0432.CCR-04-1435

    Article  PubMed  CAS  Google Scholar 

  12. Ramasamy K, Agarwal R (2008) Multitargeted therapy of cancer by silymarin. Cancer Lett 269:352–362

    Article  PubMed  CAS  Google Scholar 

  13. Kaur M, Agarwal R (2007) Silymarin and epithelial cancer chemoprevention: how close we are to bedside? Toxicol Appl Pharmacol 224(3):350–359. doi:10.1016/j.taap.2006.11.011

    Article  PubMed  CAS  Google Scholar 

  14. Hoh C, Boocock D, Marczylo T, Singh R, Berry DP, Dennison AR, Hemingway D, Miller A, West K, Euden S, Garcea G, Farmer PB, Steward WP, Gescher AJ (2006) Pilot study of oral silibinin, a putative chemopreventive agent, in colorectal cancer patients: silibinin levels in plasma, colorectum, and liver and their pharmacodynamic consequences. Clin Cancer Res 12(9):2944–2950. doi:10.1158/1078-0432.CCR-05-2724

    Article  PubMed  CAS  Google Scholar 

  15. Flaig TW, Gustafson DL, Su LJ, Zirrolli JA, Crighton F, Harrison GS, Pierson AS, Agarwal R, Glode LM (2007) A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Invest New Drugs 25(2):139–146. doi:10.1007/s10637-006-9019-2

    Article  PubMed  CAS  Google Scholar 

  16. Schroder FH, Roobol MJ, Boeve ER, de Mutsert R, Zuijdgeest-van Leeuwen SD, Kersten I, Wildhagen MF, van Helvoort A (2005) Randomized, double-blind, placebo-controlled crossover study in men with prostate cancer and rising PSA: effectiveness of a dietary supplement. Eur Urol 48(6):922–930. doi:10.1016/j.eururo.2005.08.005 discussion 930-921

    Article  PubMed  CAS  Google Scholar 

  17. Qi L, Singh RP, Lu Y, Agarwal R, Harrison GS, Franzusoff A, Glode LM (2003) Epidermal growth factor receptor mediates silibinin-induced cytotoxicity in a rat glioma cell line. Cancer Biol Ther 2(5):526–531

    PubMed  CAS  Google Scholar 

  18. Son YG, Kim EH, Kim JY, Kim SU, Kwon TK, Yoon AR, Yun CO, Choi KS (2007) Silibinin sensitizes human glioma cells to TRAIL-mediated apoptosis via DR5 up-regulation and down-regulation of c-FLIP and survivin. Cancer Res 67(17):8274–8284. doi:10.1158/0008-5472.CAN-07-0407

    Article  PubMed  CAS  Google Scholar 

  19. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2):271–277. doi:10.1016/0022-1759(86)90368-6

    Article  PubMed  CAS  Google Scholar 

  20. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4(7):552–565. doi:10.1038/nrm1150

    Article  PubMed  CAS  Google Scholar 

  21. Cobb MH (1999) MAP kinase pathways. Prog Biophys Mol Biol 71(3–4):479–500. doi:10.1016/S0079-6107(98)00056-X

    Article  PubMed  CAS  Google Scholar 

  22. Cross TG, Scheel-Toellner D, Henriquez NV, Deacon E, Salmon M, Lord JM (2000) Serine/threonine protein kinases and apoptosis. Exp Cell Res 256(1):34–41. doi:10.1006/excr.2000.4836

    Article  PubMed  CAS  Google Scholar 

  23. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192(1):1–15

    Article  PubMed  CAS  Google Scholar 

  24. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    PubMed  CAS  Google Scholar 

  25. Singh RP, Tyagi A, Sharma G, Mohan S, Agarwal R (2008) Oral silibinin inhibits in vivo human bladder tumor xenograft growth involving down-regulation of survivin. Clin Cancer Res 14(1):300–308. doi:10.1158/1078-0432.CCR-07-1565

    Article  PubMed  CAS  Google Scholar 

  26. Hajnoczky G, Davies E, Madesh M (2003) Calcium signaling and apoptosis. Biochem Biophys Res Commun 304(3):445–454. doi:10.1016/S0006-291X(03)00616-8

    Article  PubMed  CAS  Google Scholar 

  27. Huang Y, Wang KK (2001) The calpain family and human disease. Trends Mol Med 7(8):355–362. doi:10.1016/S1471-4914(01)02049-4

    Article  PubMed  CAS  Google Scholar 

  28. Vanags DM, Porn-Ares MI, Coppola S, Burgess DH, Orrenius S (1996) Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J Biol Chem 271(49):31075–31085. doi:10.1074/jbc.271.49.31075

    Article  PubMed  CAS  Google Scholar 

  29. Chen YC, Shen SC, Chow JM, Ko CH, Tseng SW (2004) Flavone inhibition of tumor growth via apoptosis in vitro and in vivo. Int J Oncol 25(3):661–670

    PubMed  CAS  Google Scholar 

  30. Wang IK, Lin-Shiau SY, Lin JK (1999) Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer 35(10):1517–1525. doi:10.1016/S0959-8049(99)00168-9

    Article  PubMed  CAS  Google Scholar 

  31. Kim EJ, Choi CH, Park JY, Kang SK, Kim YK (2008) Underlying mechanism of quercetin-induced cell death in human glioma cells. Neurochem Res 33(6):971–979. doi:10.1007/s11064-007-9416-8

    Article  PubMed  CAS  Google Scholar 

  32. Thor H, Hartzell P, Orrenius S (1984) Potentiation of oxidative cell injury in hepatocytes which have accumulated Ca2+. J Biol Chem 259(10):6612–6615

    PubMed  CAS  Google Scholar 

  33. Grijalba MT, Vercesi AE, Schreier S (1999) Ca2 + -induced increased lipid packing and domain formation in submitochondrial particles. A possible early step in the mechanism of Ca2 + -stimulated generation of reactive oxygen species by the respiratory chain. Biochemistry 38(40):13279–13287. doi:10.1021/bi9828674

    Article  PubMed  CAS  Google Scholar 

  34. Dykens JA (1994) Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2 + and Na + : implications for neurodegeneration. J Neurochem 63(2):584–591

    Article  PubMed  CAS  Google Scholar 

  35. Lee SJ, Kim MS, Park JY, Woo JS, Kim YK (2008) 15-Deoxy-delta 12, 14-prostaglandin J2 induces apoptosis via JNK-mediated mitochondrial pathway in osteoblastic cells. Toxicology 248(2–3):121–129. doi:10.1016/j.tox.2008.03.014

    Article  PubMed  CAS  Google Scholar 

  36. Kwon CH, Yoon CS, Kim YK (2007) Ciglitazone induces caspase-independent apoptosis via p38-dependent AIF nuclear translocation in renal epithelial cells. Toxicology 244:13–24

    Article  PubMed  CAS  Google Scholar 

  37. Jung JY, Yoo CI, Kim HT, Kwon CH, Park JY, Kim YK (2007) Role of mitogen-activated protein kinase (MAPK) in troglitazone-induced osteoblastic cell death. Toxicology 234(1–2):73–82. doi:10.1016/j.tox.2007.02.005

    Article  PubMed  CAS  Google Scholar 

  38. Oh HL, Seok JY, Kwon CH, Kang SK, Kim YK (2006) Role of MAPK in ceramide-induced cell death in primary cultured astrocytes from mouse embryonic brain. Neurotoxicology 27(1):31–38. doi:10.1016/j.neuro.2005.05.008

    Article  PubMed  CAS  Google Scholar 

  39. Lee WC, Choi CH, Cha SH, Oh HL, Kim YK (2005) Role of ERK in hydrogen peroxide-induced cell death of human glioma cells. Neurochem Res 30:263–270

    Article  PubMed  CAS  Google Scholar 

  40. Bhat NR, Zhang P (1999) Hydrogen peroxide activation of multiple mitogen-activated protein kinases in an oligodendrocyte cell line: role of extracellular signal-regulated kinase in hydrogen peroxide-induced cell death. J Neurochem 72(1):112–119. doi:10.1046/j.1471-4159.1999.0720112.x

    Article  PubMed  CAS  Google Scholar 

  41. Brand A, Gil S, Seger R, Yavin E (2001) Lipid constituents in oligodendroglial cells alter susceptibility to H2O2-induced apoptotic cell death via ERK activation. J Neurochem 76(3):910–918. doi:10.1046/j.1471-4159.2001.00085.x

    Article  PubMed  CAS  Google Scholar 

  42. Mallikarjuna G, Dhanalakshmi S, Singh RP, Agarwal C, Agarwal R (2004) Silibinin protects against photocarcinogenesis via modulation of cell cycle regulators, mitogen-activated protein kinases, and Akt signaling. Cancer Res 64(17):6349–6356. doi:10.1158/0008-5472.CAN-04-1632

    Article  PubMed  CAS  Google Scholar 

  43. Nguyen TT, Tran E, Nguyen TH, Do PT, Huynh TH, Huynh H (2004) The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells. Carcinogenesis 25(5):647–659. doi:10.1093/carcin/bgh052

    Article  PubMed  CAS  Google Scholar 

  44. Russo M, Palumbo R, Tedesco I, Mazzarella G, Russo P, Iacomino G, Russo GL (1999) Quercetin and anti-CD95(Fas/Apo1) enhance apoptosis in HPB-ALL cell line. FEBS Lett 462(3):322–328. doi:10.1016/S0014-5793(99)01544-6

    Article  PubMed  CAS  Google Scholar 

  45. Yang JH, Hsia TC, Kuo HM, Chao PD, Chou CC, Wei YH, Chung JG (2006) Inhibition of lung cancer cell growth by quercetin glucuronides via G2/M arrest and induction of apoptosis. Drug Metab Dispos 34(2):296–304. doi:10.1124/dmd.105.005280

    Article  PubMed  CAS  Google Scholar 

  46. Punathil T, Tollefsbol TO, Katiyar SK (2008) EGCG inhibits mammary cancer cell migration through inhibition of nitric oxide synthase and guanylate cyclase. Biochem Biophys Res Commun 375(1):162–167. doi:10.1016/j.bbrc.2008.07.157

    Article  PubMed  CAS  Google Scholar 

  47. Chen PN, Chu SC, Chiou HL, Kuo WH, Chiang CL, Hsieh YS (2006) Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Lett 235(2):248–259. doi:10.1016/j.canlet.2005.04.033

    Article  PubMed  CAS  Google Scholar 

  48. Albini A, Dell’Eva R, Vene R, Ferrari N, Buhler DR, Noonan DM, Fassina G (2006) Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets. FASEB J 20(3):527–529

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the MRC program of MOST/KOSEF (R13-2005-009) in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Keun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K.W., Choi, C.H., Kim, T.H. et al. Silibinin Inhibits Glioma Cell Proliferation via Ca2+/ROS/MAPK-Dependent Mechanism In Vitro and Glioma Tumor Growth In Vivo. Neurochem Res 34, 1479–1490 (2009). https://doi.org/10.1007/s11064-009-9935-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-9935-6

Keywords

Navigation