Skip to main content

Advertisement

Log in

Endogenous Expression of Adenosine A1, A2 and A3 Receptors in Rat C6 Glioma Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Inhibitory and stimulatory adenosine receptors have been identified and characterized in both membranes and intact rat C6 glioma cells. In membranes, saturation experiment performed with [3H]DPCPX, selective A1R antagonist, revealed a single binding site with a K D = 9.4 ± 1.4 nM and B max = 62.7 ± 8.6 fmol/mg protein. Binding of [3H]DPCPX in intact cell revealed a K D = 17.7 ± 1.3 nM and B max = 567.1 ± 26.5 fmol/mg protein. On the other hand, [3H]ZM241385 binding experiments revealed a single binding site population of receptors with K D = 16.5 ± 1.3 nM and B max = 358.9 ± 52.4 fmol/mg protein in intact cells, and K D = 4.7 ± 0.6 nM and B max = 74.3 ± 7.9 fmol/mg protein in plasma membranes, suggesting the presence of A2A receptor in C6 cells. A1, A2A, A2B and A3 adenosine receptors were detected by Western-blotting and immunocytochemistry, and their mRNAs quantified by real time PCR assays. Giα and Gsα proteins were also detected by Western-blotting and RT-PCR assays. Furthermore, selective A1R agonists inhibited forskolin- and GTP-stimulated adenylyl cyclase activity and CGS 21680 and NECA stimulated this enzymatic activity in C6 cells. These results suggest that C6 glioma cells endogenously express A1 and A2 receptors functionally coupled to adenylyl cyclase inhibition and stimulation, respectively, and suggest these cells as a model to study the role of adenosine receptors in tumoral cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A1R:

Adenosine A1 receptors

A2AR:

Adenosine A2A receptors

A2BR:

Adenosine A2B receptors

A3R:

Adenosine A3 receptors

ADA:

adenosine deaminase

CGS 21680:

2-[p-(2-carboxyethyl) phenylamino]-5´-N-ethylcarboxiamido adenosine

CHA:

N6-cyclohexyladenosine

CNS:

central nervous system

CPA:

N6-cyclopentyladenosine

[3H]DPCPX:

Cyclopentyl-1,3-dypropylxanthine,8-[dipropy-2,3−3H(N)]

Gpp(NH)p:

Guanylylimido-diphosphate

G-Protein:

GTP-binding protein

NECA:

5´-(N-ethylcarboxamido) adenosine

PSB1115:

1-propyl-8-(4-sulfophenyl)xanthine

PTX:

pertussis toxin

R-PIA:

R(-)N6-(2-phenylisopropyl) adenosine

ZM241385:

(4-(2-[7-amino-2-(2-fury1)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol)

References

  1. Deckert J, Gleiter CH (1994) Adenosine–an endogenous neuroprotective metabolite and neuromodulator. J Neural Transm Suppl 43:23–31

    PubMed  CAS  Google Scholar 

  2. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  3. Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    PubMed  CAS  Google Scholar 

  4. Reppert SM, Weaber DR, Stehle JH, Rivkees SA (1991) Molecular cloning and characterization of a rat A1 adenosine receptor that is widely expressed in brain and spinal cord. Mol Endocrinol 91:1037–1048

    Google Scholar 

  5. Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    Article  PubMed  CAS  Google Scholar 

  6. Dixon AK, Gubitz AK, Sirinathsinghji DJS, Richardson PJ, Freeman TC (1996) Tissue distribution of adenosine receptor mRNAS in the rat. Br J Pharmacol 118:1461–1468

    PubMed  CAS  Google Scholar 

  7. Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29:331–346

    PubMed  CAS  Google Scholar 

  8. Puffinbarger NK, Hansen KR, Resta R, Laurent AB, Knudsen TB, Madara JL, Thompson LF (1995) Production and characterization of multiple antigenic peptide antibodies to the adenosine A2b receptor. Mol Pharmacol 47:1126–1132

    PubMed  CAS  Google Scholar 

  9. Nicolas F, Oillet J, Koziel V, Daval JL (1994) Characterization of adenosine receptors in a model of cultured neurons from rat forebrain. Neurochem Res 19:507–515

    Article  PubMed  CAS  Google Scholar 

  10. Ruiz MA, Escriche M, Lluis C, Franco R, Martin M, Andres A, Ros M (2000) Adenosine A(1) receptor in cultured neurons from rat cerebral cortex: colocalization with adenosine deaminase. J Neurochem 75:656–664

    Article  PubMed  CAS  Google Scholar 

  11. Rebola N, Rodrigues RJ, Oliveira CR, Cunha RA (2005) Different roles of adenosine A1, A2A and A3 receptors in controlling kainate-induced toxicity in cortical cultured neurons. Neurochem Int 47:317–325

    Article  PubMed  CAS  Google Scholar 

  12. Peakman MC, Hill SJ (1996) Adenosine A1 receptor-mediated inhibition of cyclic AMP accumulation in type-2 but not type-1 rat astrocytes. Eur J Pharmacol 306:281–289

    Article  PubMed  CAS  Google Scholar 

  13. Lelievre V, Muller JM, Falcon J (1998) Adenosine modulates cell proliferation in human colonic adenocarcinoma. I. Possible involvement of adenosine A1 receptor subtypes in HT29 cells. Eur J Pharmacol 341:289–297

    Article  PubMed  CAS  Google Scholar 

  14. Merighi S, Mirandola P, Varani K, Gessi S, Leung E, Baraldi PG, Tabrizi MA, Borea PA (2003) A glance at adenosine receptors: novel target for antitumor therapy. Pharmacol Ther 100:31–48

    Article  PubMed  CAS  Google Scholar 

  15. Noronha-Blob L, Marshall RP, Kinnier WJ, U’Prichard DC (1986) Pharmacological profile of adenosine A2 receptor in PC12 cells. Life Sci 39:1059–1067

    Article  PubMed  CAS  Google Scholar 

  16. Mundell SJ, Kelly E (1998) Evidence for co-expression and desensitization of A2a and A2b adenosine receptors in NG108–15 cells. Biochem Pharmacol 55:595–603

    Article  PubMed  CAS  Google Scholar 

  17. Kleihues P, Aguzzi A, Ohgaki H (1995) Genetic and environmental factors in the etiology of human brain tumors. Toxicol Lett 82:601–605

    Article  PubMed  Google Scholar 

  18. Terzis AJ, Niclou SP, Rajcevic U, Danzeisen C, Bjerkvig R (2006) Cell therapies for glioblastoma. Expert Opin Biol Ther 6:739–749

    Article  PubMed  CAS  Google Scholar 

  19. Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57:2602–2605

    PubMed  CAS  Google Scholar 

  20. Melani A, De Micheli E, Pinna G, Alfieri A, Corte LD, Pedata F (2003) Adenosine extracellular levels in human brain gliomas: an intraoperative microdialysis study. Neurosci Lett 346:93–96

    Article  PubMed  CAS  Google Scholar 

  21. Grobben B, De Deyn PP, Slegers H (2002) Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res 310:257–70

    Article  PubMed  CAS  Google Scholar 

  22. Elfman L, Lindgren E, Walum E, Fredholm BB (1984) Adenosine analogues stimulate cyclic AMP-accumulation in cultures neuroblastoma and glioma cells. Acta Pharmacol Toxicol (Copenh) 55:297–302

    CAS  Google Scholar 

  23. Chu YY, Tu KH, Lee YC, Kuo CJ, Lai HL, Chern Y (1996) Characterization of the rat A2A adenosine receptor gene. DNA Cell Biol 15:329–337

    Article  PubMed  CAS  Google Scholar 

  24. Lee YC, Chien CL, Sun CN et al (2003) Characterization of the rat A2A adenosine receptor gene: a 4.8-kb promoter-proximal DNA fragment confers selective expression in the central nervous system. Eur J Neurosci 18:1786–1796

    Article  PubMed  Google Scholar 

  25. Palmer TM, Stiles GL (1999) Stimulation of A(2A) adenosine receptor phosphorylation by protein kinase C activation: evidence for regulation by multiple protein kinase C isoforms. Biochemistry 38:14833–14842

    Article  PubMed  CAS  Google Scholar 

  26. Sands WA, Martin AF, Strong EW, Palmer TM (2004) Specific inhibition of nuclear factor-kappaB-dependent inflammatory responses by cell type-specific mechanisms upon A2A adenosine receptor gene transfer. Mol Pharmacol 66:1147–1159

    Article  PubMed  CAS  Google Scholar 

  27. Albasanz J, Fernandez M, Martin M (2002) Internalization of metabotropic glutamate receptor in C6 cells through clathrin-coated vesicles. Brain Res Mol Brain Res 99:54–66

    Article  Google Scholar 

  28. Parkinson FE, Ferguson J, Zamzow CR, Xiong W (2006) Gene expression for enzymes and transporters involved in regulating adenosine and inosine levels in rat forebrain neurons, astrocytes and C6 glioma cells. J Neurosci Res 84:801–808

    Article  PubMed  CAS  Google Scholar 

  29. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  30. Vendite D, Sanz JM, Lopez-Alanon DM, Vacas J, Andres A, Ros M (1998) Desensitization of adenosine A1 receptor-mediated inhibition of adenylyl cyclase in cerebellar granule cells. Neurochem Res 23:211–218

    Article  PubMed  CAS  Google Scholar 

  31. Higuchi R, Fockler C, Dollinger G, Watson R (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11:1026–1030

    Article  PubMed  CAS  Google Scholar 

  32. Brown BL, Albano JDH, Ekins R, Sgherzi AM, Tampion W (1971) A simple method for the measurement of a 3,5-cyclic monophosphate. Biochem J 121:561–562

    PubMed  CAS  Google Scholar 

  33. Murphy MG, Moak CM, Byczko Z, MacDonald WF (1991) Adenosine-dependent regulation of cyclic AMP accumulation in primary cultures of rat astrocytes and neurons. J Neurosci Res 30:631–640

    Article  PubMed  CAS  Google Scholar 

  34. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  35. Lohse MJ, Klotz KN, Lindenborn-Fotinos J, Reddington M, Schwabe U, Olsson RA (1987) 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX): a selective high affinity antagonist radioligand for A1 adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 336:204–210

    Article  PubMed  CAS  Google Scholar 

  36. Poucher SM, Keddie JR, Singh P, Stoggall SM, Caulkett PW, Jones G, Coll MG (1995) The in vitro pharmacology of ZM 241385, a potent, non-xanthine A2a selective adenosine receptor antagonist. Br J Pharmacol 115:1096–1102

    PubMed  CAS  Google Scholar 

  37. Londos C, Cooper DMF, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci USA 77:2551–2554

    Article  PubMed  CAS  Google Scholar 

  38. Biber K, Klotz KN, Berger M, Gebicke-Harter PJ, van Calker D (1997) Adenosine A1 receptor-mediated activation of phospholipase C in cultured astrocytes depends on the level of receptor expression. J Neurosci 17:4956–4964

    PubMed  CAS  Google Scholar 

  39. Trincavelli ML, Marroni M, Tuscano D, Ceruti S, Mazzola A, Mitro N, Abbracchio MP, Martini C (2004) Regulation of A2B adenosine receptor functioning by tumour necrosis factor a in human astroglial cells. J Neurochem 91:1180–90

    Article  PubMed  CAS  Google Scholar 

  40. Christofi FL, Zhang H, Yu JG, Guzman J, Xue J, Kim M, Wang YZ, Cooke HJ (2001) Differential gene expression of adenosine A1, A2a, A2b, and A3 receptors in the human enteric nervous system. J Comp Neurol 439:46–64

    Article  PubMed  CAS  Google Scholar 

  41. Spielman WS, Klotz KN, Arend LJ, Olson BA, LeVier DG, Schwabe U (1992) Characterization of adenosine A1 receptor in a cell line (28A) derived from rabbit collecting tubule. Am J Physiol 263:C502–C508

    PubMed  CAS  Google Scholar 

  42. Smith AD, Check DJ, Buxton IL, Westfall DP (1997) Competition of adenosine nucleotides for a 1,3-[3H]-dipropyl-8-cyclopentylxanthine binding site in rat vas deferens. Clin Exp Pharmacol Physiol 24:492–497

    PubMed  CAS  Google Scholar 

  43. Bohm M, Pieske B, Ungerer M, Erdmann E (1989) Characterization of A1 adenosine receptors in atrial and ventricular myocardium from diseased human hearts. Circ Res 65:1201–1211

    PubMed  CAS  Google Scholar 

  44. Falcón J, Privat K, Ravault JP (1997) Binding of an adenosine A1 receptor agonist and adenosine A1 receptor antagonist to sheep pineal membranes. Eur J Pharmacol 337:325–331

    Article  PubMed  Google Scholar 

  45. Peachey JA, Hourani SM, Kitchen I (1994) The binding of 1,3-[3H]-dipropyl-8-cyclopentylxanthine to adenosine A1 receptors in rat smooth muscle preparations. Br J Pharmacol 113:1249–1256

    PubMed  CAS  Google Scholar 

  46. Klotz KN, Lohse MJ, Schwabe U, Cristalli G, Vittori S, Grifantini M (1989) 2-Chloro-N6-[3H]cyclopentyladenosine ([3H]CCPA)- a high affinity agonist radioligand for A1 adenosine receptors. Naunyn Schmiedeberg’s Arch Pharmacol 343:196–201

    Article  Google Scholar 

  47. Gerwins P, Nordstedt C, Fredholm BB (1990) Characterization of adenosine A1 receptors in intact DDT1 MF-2 smooth muscle cells. Mol Pharmacol 38:660–666

    PubMed  CAS  Google Scholar 

  48. Hettinger-Smith BD, Leid M, Murray TF (1996) Chronic exposure to adenosine receptor agonists and antagonists reciprocally regulates the A1 adenosine receptor-adenylyl cyclase system in cerebellar granule cells. J Neurochem 67:1921–1930

    Article  PubMed  CAS  Google Scholar 

  49. Sanz JM, Vendite D, Fernandez M, Andres A, Ros M (1996) Adenosine A1 receptors in cultured cerebellar granule cells: role of endogenous adenosine. J Neurochem 67:1469–1477

    Article  PubMed  CAS  Google Scholar 

  50. Palmer TM, Poucher SM, Jacobson KA, Stiles GL (1995) 125I-4-(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5] triazin-5-yl-amino]ethyl)phenol, a high affinity antagonist radioligand selective for the A2a adenosine receptor. Mol Pharmacol 48:970–974

    PubMed  CAS  Google Scholar 

  51. Alexander SP, Millns PJ (2001) [(3)H]ZM241385–an antagonist radioligand for adenosine A(2A) receptors in rat brain. Eur J Pharmacol 411:205–210

    Article  PubMed  CAS  Google Scholar 

  52. Ji XD, Jacobson KA (1999) Use of the triazolotriazine [3H]ZM 241385 as a radioligand at recombinant human A2B adenosine receptors. Drug Des Discov 16:217–26

    PubMed  CAS  Google Scholar 

  53. Willets JM, Parent JL, Benovic JL, Kelly E (1999) Selective reduction in A2 adenosine receptor desensitization following antisense-induced suppression of G protein-coupled receptor kinase 2 expression. J Neurochem 73:1781–1789

    Article  PubMed  CAS  Google Scholar 

  54. Jones DT, Reed RR (1987) Molecular cloning of five GTP-binding cDNA species from rat olfatory neuroepithelium. J Biol Chem 262:14241–14249

    PubMed  CAS  Google Scholar 

  55. Kim SY, Ang SL, Bloch DB, Bloch KD, Kawahara Y, Tolman C, Lee R, Seidman JG, Neer EJ (1988) Identification of cDNA encoding an additional alfa subunit of a human GTP-binding protein: expression of three alpha i subtypes in human tissues and cell lines. Proc Natl Acad Sci USA 85:4153–4157

    Article  PubMed  CAS  Google Scholar 

  56. Yan K, Greene E, Belga F, Rasenick MM (1996) Synaptic membrane G proteins are complexed with tubulin in situ. J Neurochem 66:489–95

    Google Scholar 

  57. El Jamali A, Rachdaoui N, Dib K, Correze C (1998) Cyclic AMP regulation of G(i alpha2) and G(i alpha3) mRNAs and proteins in astroglial cells. J Neurochem 71:2271–2277

    Article  PubMed  CAS  Google Scholar 

  58. Brabet P, Pantaloni C, Rouot B, Toutant M, Garcia-Saiz A, Bockaert J, Homburger V (1988) Multiple species and isoforms of Bordetella pertussis toxin substrates. Biochem Biophys Res Commun 152:1185–1192

    Article  PubMed  CAS  Google Scholar 

  59. Figler RA, Lindorfer MA, Graber SG, Garrison JC, Linden J (1997) Reconstitution of bovine A1 adenosine receptors and G protein in phospholipid vesicles: beta-gamma subunit composition influences guanine nucleotide exchange and agonist binding. Biochemistry 36:16288–16299

    Article  PubMed  CAS  Google Scholar 

  60. van Calker D, Muller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005

    Article  PubMed  Google Scholar 

  61. Insel PA, Ostrom RS (2003) Forskolin as a tool for examining adenylyl cyclase expression, regulation and G protein signalling. Cel and Mol Neurobiol 23:305–314

    Article  CAS  Google Scholar 

  62. Lorenzen A, Sebastiao AM, Sellin A, Vogt H, Schwabe U, Ribeiro JA, Ijzerman P (1997) Biological activities of N6, C8-disustituted adenosine derivatives as partial agonist at rat brain adenosine A1 receptors. Eur J Pharmacol 334:299–307

    Article  PubMed  CAS  Google Scholar 

  63. Pianet I, Merle M, Labouesse J (1989) ADP and, indirectly, ATP are potent inhibitors of cAMP production in intact isoproterenol-stimulated C6 glioma cells. Biochem Biophys Res Commun 163:1150–1157

    Article  PubMed  CAS  Google Scholar 

  64. Peakman MC, Hill SJ (1994) Adenosine A2B-receptor-mediated cyclic AMP accumulation in primary rat astrocytes. Br J Pharmacol 111:191–198

    PubMed  CAS  Google Scholar 

  65. Daly JW (1984) Forskolin, adenylate cyclase and cell physiology: An overview. Adv Cyclic Nucleotide Prot Phosph Res 17:81–89

    CAS  Google Scholar 

  66. Merighi S, Mirandola P, Milani D, Varani K, Gessi S, Klotz KN, Leung E, Baraldi PG, Borea PA (2002) Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells. J Invest Dermatol 119:923–933

    Article  PubMed  CAS  Google Scholar 

  67. Ohana G, Bar-Yehuda S, Barer F, Fishman P (2001) Differential effect of adenosine on tumor and normal cell growth: focus on the A3 adenosine receptor. J Cell Physiol 186:19–23

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by DGES grant BFI2005-00582 and JCCM grants PAI-05-043 and GC05-003. Carlos Alberto Castillo is the recipient of a predoctoral fellowship from J.C.C.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mairena Martín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castillo, C.A., Albasanz, J.L., Fernández, M. et al. Endogenous Expression of Adenosine A1, A2 and A3 Receptors in Rat C6 Glioma Cells. Neurochem Res 32, 1056–1070 (2007). https://doi.org/10.1007/s11064-006-9273-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9273-x

Keywords

Navigation