Skip to main content
Log in

Curcumin modulates eukaryotic initiation factors in human lung adenocarcinoma epithelial cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Curcumin, a polyphenolic compound, is the active component of Curcuma longa and has been extensively investigated as an anticancer drug that modulates multiple pathways. Eukaryotic initiation factors (eIFs) have been known to play important roles in translation initiation, which controls cell growth and proliferation. Little is known about the effects of curcumin on eIFs in lung cancer. The objective of this study was to exam the curcumin cytotoxic effect and modulation of two major rate-limiting translation initiation factors, including eIF2α and eIF4E protein expression levels in lung adenocarcinoma epithelial cell line A549. Cytotoxicity was measured by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and protein changes were determined by Western blot. A549 cells were treated with 0–240 μM curcumin for 4–96 h. The inhibitory effects of curcumin on cytotoxicity were dose- and time-dependent (P < 0.001). The 50% inhibitory curcumin concentrations (IC50s) at 24, 48, 72, and 96 h were 93, 65, 40, and 24 μM, respectively. Protein expressions of eIF2α, eIF4E, Phospho-4E-BP1 were down-regulated, while Phospho-eIF2α and Phospho-eIF4E were up-regulated after A549 cells were treated with 20 and 40 μM curcumin for 24 h. In addition, the effects of curcumin on these protein expression changes followed a significant dose-response (P < 0.05, trend test). These findings suggest that curcumin could reduce cell viability through prohibiting the initiation of protein synthesis by modulating eIF2α and eIF4E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pillai GR, Srivastava AS, Hassanein TI, Chauhan DP, Carrier E (2004) Induction of apoptosis in human lung cancer cells by curcumin. Cancer Lett 208:163–170

    Article  Google Scholar 

  2. Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B et al (2008) Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol 76:1590–1611

    Article  CAS  PubMed  Google Scholar 

  3. Kunnumakkara AB, Anand P, Aggarwal BB (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 269:199–225

    Article  CAS  PubMed  Google Scholar 

  4. Moragoda L, Jaszewski R, Majumdar APN (2001) Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells. Anticancer Res 21:873–878

    CAS  PubMed  Google Scholar 

  5. Valentini A, Conforti F, Crispini A, De Martino A, Condello R, Stellitano C et al (2009) Synthesis, oxidant properties, and antitumoral effects of a heteroleptic palladium(II) complex of curcumin on human prostate cancer cells. J Med Chem 52:484–491

    Article  CAS  PubMed  Google Scholar 

  6. Reuter S, Eifes S, Dicato M, Aggarwal BB, Diederich M (2008) Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol 76:1340–1351

    Article  CAS  PubMed  Google Scholar 

  7. Long L, Cao YD (2008) Down-regulation of Notch1 and NF-kappa B by curcumin in breast cancer cells MDA-MB-231. Chin J Cancer Res 20:294–300

    Article  CAS  Google Scholar 

  8. Miller M, Chen SL, Woodliff J, Kansra S (2008) Curcumin (diferuloylmethane) inhibits cell proliferation, induces apoptosis, and decreases hormone levels and secretion in pituitary tumor cells. Endocrinology 149:4158–4167

    Article  CAS  PubMed  Google Scholar 

  9. Lin SS, Huang HP, Wood WG, Chung JG (2008) DNA damage and endoplasmic reticulum stress mediated curcumin-induced cell cycle arrest and apoptosis in human lung carcinoma a-549 cells through the activation caspases cascade and mitochondrial-dependent pathway. Anticancer Res 28:412

    Google Scholar 

  10. Chen HW, Lee JY, Huang JY, Wang CC, Chen WJ, Su SF et al (2008) Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Res 68:7428–7438

    Article  CAS  PubMed  Google Scholar 

  11. Chen HW, Yu SL, Chen JJ, Li HN, Lin YC, Yao PL et al (2004) Anti-invasive gene expression profile of curcumin in lung adenocarcinoma based on a high throughput microarray analysis. Mol Pharmacol 65:99–110

    Article  CAS  PubMed  Google Scholar 

  12. Lev-Ari S, Starr A, Vexler A, Karaush V, Loew V, Greif J et al (2006) Inhibition of pancreatic and lung adenocarcinoma cell survival by curcumin is associated with increased apoptosis, down-regulation of COX-2 and EGFR and inhibition of Erk1/2 activity. Anticancer Res 26:4423–4430

    CAS  PubMed  Google Scholar 

  13. Rosenwald IB (1996) Upregulated expression of the genes encoding translation initiation factors eIF-4E and eIF-2 alpha in transformed cells. Cancer Lett 102:113–123

    Article  CAS  PubMed  Google Scholar 

  14. Hershey JWB (1991) Translational control in mammalian-cells. Annu Rev Biochem 60:717–755

    Article  CAS  PubMed  Google Scholar 

  15. Rosenwald IB, Hutzler MJ, Wang ST, Savas L, Fraire AE (2001) Expression of eukaryotic translation initiation factors 4E and 2 alpha is increased frequently in bronchioloalveolar but not in squamous cell carcinomas of the lung. Cancer 92:2164–2171

    Article  CAS  PubMed  Google Scholar 

  16. Rosenwald IB, Koifman L, Savas L, Chen JJ, Woda BA, Kadin ME (2008) Expression of the translation initiation factors eIF-4E and eIF-2 alpha is frequently increased in neoplastic cells of Hodgkin lymphoma. Hum Pathol 39:910–916

    Article  CAS  PubMed  Google Scholar 

  17. Fernandez J, Yaman I, Sarnow P, Snider MD, Hatzoglou M (2002) Regulation of internal ribosomal entry site-mediated translation by phosphorylation of the translation initiation factor eIF2 alpha. J Biol Chem 277:19198–19205

    Article  CAS  PubMed  Google Scholar 

  18. Raught B, Gingras A-C, Sonenberg N, Sonenberg N, Hershey JWB, Mathews MB (2000) Regulation of ribosomal recruitment in eukaryotes. Cold Spring Harbor Monograph Series; Translation control of gene expression, pp 245–293

  19. Pae HO, Jeong SO, Jeong GS, Kim KM, Kim HS, Kim SA et al (2007) Curcumin induces pro-apoptotic endoplasmic reticulum stress in human leukemia HL-60 cells. Biochem Biophys Res Commun 353:1040–1045

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Li Y, Yang DQ (2008) Phosphorylation of eIF-4E positively regulates formation of the eIF-4F translation initiation complex following DNA damage. Biochem Biophys Res Commun 367:54–59

    Article  CAS  PubMed  Google Scholar 

  21. Salehi Z, Mashayekhi F (2006) Expression of the eukaryotic translation initiation factor 4E (eIF4E) and 4E-BP1 in esophageal cancer. Clin Biochem 39:404–409

    Article  CAS  PubMed  Google Scholar 

  22. Gomez-Martin C, Rubio-Viqueira B, Hidalgo M (2005) Current status of mammalian target of rapamycin inhibitors in lung cancer. Clin Lung Cancer 7(Suppl 1):S13–S18

    Article  PubMed  Google Scholar 

  23. Beevers CS, Chen L, Liu L, Luo Y, Webster NJG, Huang S (2009) Curcumin disrupts the mammalian target of rapamycin-raptor complex. Cancer Res 69:1000–1008

    Article  CAS  PubMed  Google Scholar 

  24. Beevers CS, Li FJ, Liu L, Huang SL (2006) Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer 119:757–764

    Article  CAS  PubMed  Google Scholar 

  25. Lin JK (2007) Molecular targets of curcumin. Adv Exp Med Biol 595:227–243

    Article  PubMed  Google Scholar 

  26. Wang JB, Qi LL, Zheng SD, Wu TX (2009) Curcumin induces apoptosis through the mitochondria-mediated apoptotic pathway in HT-29 cells. J Zhejiang Univ Sci B 10:93–102

    Article  CAS  PubMed  Google Scholar 

  27. Montopoli M, Ragazzi E, Froldi G, Caparrotta L (2009) Cell-cycle inhibition and apoptosis induced by curcumin and cisplatin or oxaliplatin in human ovarian carcinoma cells. Cell Prolif 42:195–206

    Article  CAS  PubMed  Google Scholar 

  28. Zhang J, Qi H, Wu C (2004) Research of anti-proliferation of curcumin on A549 human lung cancer cells and its mechanism. Zhong Yao Cai 27(12):923–927

    PubMed  Google Scholar 

  29. Latreille M, Larose L (2006) Nck in a complex containing the catalytic subunit of protein phosphatase 1 regulates eukaryotic initiation factor 2 alpha signaling and cell survival to endoplasmic reticulum stress. J Biol Chem 281:26633–26644

    Article  CAS  PubMed  Google Scholar 

  30. Rosenwald IB, Wang ST, Savas L, Woda B, Pullman J (2003) Expression of translation initiation factor eIF-2 alpha is increased in benign and malignant melanocytic and colonic epithelial neoplasms. Cancer 98:1080–1088

    Article  CAS  PubMed  Google Scholar 

  31. Rosenwald IB, Chen JJ, Wang ST, Savas L, London IM, Pullman J (1999) Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. Oncogene 18:2507–2517

    Article  CAS  PubMed  Google Scholar 

  32. Nathan CAO, Liu L, Li BD, Abreo FW, Nandy I, DeBenedetti A (1997) Detection of the proto-oncogene eIF4E in surgical margins may predict recurrence in head and neck cancer. Oncogene 15:579–584

    Article  CAS  PubMed  Google Scholar 

  33. Rosenwald IB (1996) Deregulation of protein synthesis as a mechanism of neoplastic transformation. Bioessays 18:243–250

    Article  CAS  PubMed  Google Scholar 

  34. Jiang YP, Ballou LM, Lin RZ (2001) Rapamycin-insensitive regulation of 4E-BP1 in regenerating rat liver. J Biol Chem 276:10943–10951

    Article  CAS  PubMed  Google Scholar 

  35. Datta B, Datta R, Ghosh A, Majumdar A (2006) The binding between p67 and eukaryotic initiation factor 2 plays important roles in the protection of eIF2 alpha from phosphorylation by kinases. Arch Biochem Biophys 452:138–148

    Article  CAS  PubMed  Google Scholar 

  36. Garcia-Bonilla L, Cid C, Alcazar A, Burda J, Ayuso I, Salinas M (2007) Regulatory proteins of eukaryotic initiation factor 2-alpha subunit (eIF2 alpha) phosphatase, under ischemic reperfusion and tolerance. J Neurochem 103:1368–1380

    Article  CAS  PubMed  Google Scholar 

  37. Jiang HY, Wek RC (2005) Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2 alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J Biol Chem 280:14189–14202

    Article  CAS  PubMed  Google Scholar 

  38. Perkins DJ, Barber GN (2004) Defects in translational regulation mediated by the alpha subunit of eukaryotic initiation factor 2 inhibit antiviral activity and facilitate the malignant transformation of human fibroblasts. Mol Cell Biol 24:2025–2040

    Article  CAS  PubMed  Google Scholar 

  39. Althausen S, Mengesdorf T, Mies G, Olah L, Nairn AC, Proud CG et al (2001) Changes in the phosphorylation of initiation factor eIF-2 alpha, elongation factor eEF-2 and p70 S6 kinase after transient focal cerebral ischaemia in mice. J Neurochem 78:779–787

    Article  CAS  PubMed  Google Scholar 

  40. Qu SM, Perlaky SE, Organ EL, Crawford D, Cavener DR (1997) Mutations at the Ser(50) residue of translation factor eIF-2a dominantly affect developmental rate, body weight, and viability of Drosophila melanogaster. Gene Expr 6:349–360

    CAS  PubMed  Google Scholar 

  41. Donze O, Jagus R, Koromilas AE, Hershey JWB, Sonenberg N (1995) Abrogation of Translation Initiation-Factor Eif-2 Phosphorylation Causes Malignant Transformation of Nih 3t3 Cells. EMBO J 14:3828–3834

    CAS  PubMed  Google Scholar 

  42. Gingras AC, Raught B, Sonenberg N (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963

    Article  CAS  PubMed  Google Scholar 

  43. Lawrence JC Jr, Abraham RT (1997) PHAS/4E-BPs as regulators of mRNA translation and cell proliferation. Trends Biochem Sci 22:345–349

    Article  CAS  PubMed  Google Scholar 

  44. Jiang TJ, Zhu YL, Luo C, Lu XY, Zhang W, Qiu FM et al (2007) Matrine inhibits the activity of translation factor eIF4E through dephosphorylation of 4E-BP1 in gastric MKN45 cells. Planta Med 73:1176–1181

    Article  CAS  PubMed  Google Scholar 

  45. Scheper GC, Proud CG (2002) Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur J Biochem 269:5350–5359

    Article  CAS  PubMed  Google Scholar 

  46. Duncan RF, Peterson H, Hagedorn CH, Sevanian A (2003) Oxidative stress increases eukaryotic initiation factor 4E phosphorylation in vascular cells. Biochem J 369:213–225

    Article  CAS  PubMed  Google Scholar 

  47. Fraser CS, Pain VM, Morley SJ (1999) Cellular stress in xenopus kidney cells enhances the phosphorylation of eukaryotic translation initiation factor (eIF)4E and the association of eIF4F with poly(A)-binding protein. Biochem J 342 (Pt 3):519–526

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge Dr. Larry Jenkins from University of Pittsburgh and Dr. Todd Anderson from Texas Tech University for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Gao.

Additional information

Lixia Chen and Guoqing Tian have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Tian, G., Shao, C. et al. Curcumin modulates eukaryotic initiation factors in human lung adenocarcinoma epithelial cells. Mol Biol Rep 37, 3105–3110 (2010). https://doi.org/10.1007/s11033-009-9888-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9888-5

Keywords

Navigation