Skip to main content

Advertisement

Log in

Ouabain increases iNOS-dependent nitric oxide generation which contributes to the hypertrophic effect of the glycoside: possible role of peroxynitrite formation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In addition to inotropic effects, cardiac glycosides exert deleterious effects on the heart which limit their use for cardiac therapeutics. In this study, we determined the possible contribution of ouabain-induced iNOS stimulation to the resultant hypertrophic as well as cytotoxic effects of the glycoside on cultured adult rat ventricular myocytes. Myocytes were treated with ouabain (50 μM) for up to 24 h. Ouabain significantly increased gene and protein levels of inducible nitric oxide synthase (iNOS) which was associated with significantly increased release of NO from myocytes as well as increased total release of reactive oxygen species (ROS), superoxide anion (O2 ), and increased peroxynitrite formation as assessed by protein tyrosine nitration. Administration of ouabain was also associated with increased levels of myocyte toxicity as determined by myocyte morphology, trypan blue staining and lactate dehydrogenase (LDH) efflux. The nonspecific NOS inhibitor Nω-nitro-l-arginine methyl ester and the more selective iNOS inhibitor 1400W both abrogated the increase in LDH release but had no significant effect on either morphology or trypan blue staining. Ouabain also significantly increased both myocyte surface area and expression of atrial natriuretic peptide indicating a hypertrophic response with both parameters being completely prevented by NOS inhibition. The effects of iNOS inhibitors were associated with diminished ouabain tyrosine nitration as well as abrogation of ouabain-induced p38 and ERK phosphorylation. Our study shows that ouabain is a potent inducer of NO formation, iNOS upregulation, and increased production of ROS. Inhibition of ouabain-dependent peroxynitrite formation may contribute to the antihypertrophic effect of iNOS inhibition possibly by preventing downstream MAPK activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rastaldo R, Pagliaro P, Cappelo S, Penna C, Mancardi D, Westhof N, Losano G (2007) Nitric oxide and cardiac function. Life Sci 81:779–793

    Article  PubMed  CAS  Google Scholar 

  2. Loscalzo J, Welch G (1995) Nitric oxide and its role in cardiovascular system. Progr Cardiovasc Dis 38:87–104

    Article  CAS  Google Scholar 

  3. Kumar A, Brar R, Wang P, Dee L, Skorupa G, Khadour F, Schulz R, Parrillo JE (1999) Role of nitric oxide and cGMP in human septic serum-induced depression of cardiac myocyte contractility. Am J Physiol 276:R265–R276

    PubMed  CAS  Google Scholar 

  4. Nickola MW, Wold LE, Colligan PB, Wang GJ, Samson WK, Ren J (2000) Leptin attenuates cardiac contraction in rat ventricular myocytes. Role of NO. Hypertension 36:501–505

    PubMed  CAS  Google Scholar 

  5. Ebihara Y, Karmazyn M (1996) Inhibition of β- but not α1-mediated adrenergic responses in isolated hearts and cardiomyocytes by nitric oxide and 8-bromo cyclic GMP. Cardiovasc Res 32:622–629

    PubMed  CAS  Google Scholar 

  6. Ebihara Y, Haist JV, Karmazyn M (1996) Modulation of endothelin-1 effects on rat hearts and cardiomyocytes by nitric oxide and 8-bromo cyclic GMP. J Mol Cell Cardiol 28:265–277

    Article  PubMed  CAS  Google Scholar 

  7. Loyer X, Heymes C, Samuel JL (2008) Constitutive nitric oxide synthases in the heart from hypertrophy to failure. Clin Exp Pharmacol Physiol 35:483–488

    Article  PubMed  CAS  Google Scholar 

  8. Huang L, Li H, Xie Z (1997) Ouabain-induced hypertrophy in cultured cardiac myocytes is accompanied by changes in expression of several late response genes. J Mol Cell Cardiol 29:429–437

    Article  PubMed  CAS  Google Scholar 

  9. Huang L, Kometiani P, Xie Z (1997) Differential regulation of Na/K-ATPaseα-subunit isoform gene expressions in cardiac myocytes by ouabain and other hypertrophic stimuli. J Mol Cell Cardiol 29:3157–3167

    Article  PubMed  CAS  Google Scholar 

  10. Gan XT, Gong XQ, Xue J, Haist JV, Bai D, Karmazyn M (2010) Sodium-hydrogen exchange inhibition attenuates glycoside-induced hypertrophy in rat ventricular myocytes. Cardiovasc Res 85:79–89

    Article  PubMed  CAS  Google Scholar 

  11. Liu L, Zhao X, Pierre SV, Askari A (2007) Association of PI3K-Akt signaling pathway with digitalis-induced hypertrophy of cardiac myocytes. Am J Physiol Cell Physiol 293:C1489–C1497

    Article  PubMed  CAS  Google Scholar 

  12. Saini-Chohan HK, Goyal RK, Dhalla NS (2010) Involvement of sarcoplasmic reticulum in changing intracellular calcium due to Na+/K+-ATPase inhibition in cardiomyocytes. Can J Physiol Pharmacol 88:702–715

    Article  PubMed  CAS  Google Scholar 

  13. Saini-Chohan HK, Dhalla NS (2009) Attenuation of ischemia-reperfusion-induced alterations in intracellular Ca2+ in cardiomyocytes from hearts treated with N-acetylcysteine and N-mercaptopropionylglycine. Can J Physiol Pharmacol 87:1110–1119

    Article  PubMed  CAS  Google Scholar 

  14. Kennedy DJ, Vetteth S, Xie M, Periyasamy SM, Xie Z, Han C, Basrur V, Mutgi K, Fedorov V, Malhotra D, Shapiro JI (2006) Ouabain decreases sarco(endo)plasmic reticulum calcium ATPase activity in rat hearts by a process involving protein oxidation. Am J Physiol Heart Circ Physiol 291:H3003–H3011

    Article  PubMed  CAS  Google Scholar 

  15. Xie J, Wang Y, Summer WR, Greenberg SS (1993) Ouabain enhances basal release of nitric oxide from carotid artery. Am J Med Sci 305:157–163

    Article  PubMed  CAS  Google Scholar 

  16. Ikeda U, Furuhashi K, Kanbe T, Shimada K (1995) Ouabain enhances nitric oxide synthesis in rat vascular smooth muscle cells induced by interleukin-1 beta. Eur J Pharmacol 288:379–383

    Article  PubMed  CAS  Google Scholar 

  17. Eva A, Kirch U, Scheiner-Bobis G (2006) Signaling pathways involving the sodium pump stimulate NO production in endothelial cells. Biochem Biophys Acta 1758:1809–1814

    Article  PubMed  CAS  Google Scholar 

  18. Sowa G, Przewlocki R (1997) Ouabain enhances the lipopolysaccharide-induced nitric oxide production by rat peritoneal macrophages. Immunopharmacology 36:95–100

    Article  PubMed  CAS  Google Scholar 

  19. Dong XH, Komiyama Y, Nishimura N, Masuda M, Takahashi H (2004) Nanomolar level of ouabain increases intracellular calcium to produce nitric oxide in rat aortic endothelial cells. Clin Exp Pharmacol Physiol 31:276–283

    Article  PubMed  CAS  Google Scholar 

  20. Kilić A, Javadov S, Karmazyn M (2009) Estrogen exerts concentration-dependent pro- and anti-hypertrophic effects on adult cultured ventricular myocytes. Role of NHE-1 in estrogen-induced hypertrophy. J Mol Cell Cardiol 46:360–369

    Article  PubMed  Google Scholar 

  21. Hohorst HJ (1963) l-(+)-Lactate. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 215–219

    Google Scholar 

  22. Rahimtoola SH, Tak T (1996) The use of digitalis in heart failure. Curr Probl Cardiol 21:781–853

    Article  PubMed  CAS  Google Scholar 

  23. Gupta S, McArthur C, Grady C, Ruderman NB (1994) Stimulation of vascular Na+–K+-ATPase activity by nitric oxide: a cGMP-independent effect. Am J Physiol 266:H2146–H2151

    PubMed  CAS  Google Scholar 

  24. Yaktubay N, Ogülener N, Onder S, Baysal F (1999) Possible stimulation of Na+–K+-ATPase by NO produced from sodium nitrite by ultraviolet light in mouse gastric fundal strip. Gen Pharmacol 32:159–162

    Article  PubMed  CAS  Google Scholar 

  25. William M, Vien J, Hamilton E, Garcia A, Bundgaard H, Clarke RJ, Rasmussen HH (2005) The nitric oxide donor sodium nitroprusside stimulates the Na+–K+ pump in isolated rabbit cardiac myocytes. J Physiol 565:815–835

    Article  PubMed  CAS  Google Scholar 

  26. Gao Y (2010) The multiple actions of NO. Pflugers Arch 459:829–839

    Article  PubMed  CAS  Google Scholar 

  27. Xia Y, Dawson VL, Dawson TM, Snyder SH, Zweier JL (1996) Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc Natl Acad Sci USA 93:6770–6774

    Article  PubMed  CAS  Google Scholar 

  28. Ischiropoulos H (2009) Protein tyrosine nitration—an update. Arch Biochem Biophys 484:117–121

    Article  PubMed  CAS  Google Scholar 

  29. Peluffo G, Radi R (2007) Biochemistry of protein tyrosine nitration in cardiovascular pathology. Cardiovasc Res 75:291–302

    Article  PubMed  CAS  Google Scholar 

  30. Arstall MA, Sawyer DB, Fukazawa R, Kelly RA (1999) Cytokine-mediated apoptosis in cardiac myocytes: the role of inducible nitric oxide synthase induction and peroxynitrite generation. Circ Res 85:829–840

    PubMed  CAS  Google Scholar 

  31. Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508

    PubMed  CAS  Google Scholar 

  32. Mungrue IN, Gros R, You X, Pirani A, Azad A, Csont T, Schulz R, Butany J, Stewart DJ, Husain M (2002) Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J Clin Investig 109:735–743

    PubMed  CAS  Google Scholar 

  33. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  PubMed  CAS  Google Scholar 

  34. Nadruz W Jr, Lagosta VJ, Moreno H Jr, Coelho OR, Franchini KG (2004) Simvastatin prevents load-induced protein tyrosine nitration in overloaded hearts. Hypertension 43:1060–1066

    Article  PubMed  CAS  Google Scholar 

  35. Zhang P, Xu X, Hu X, van Deel ED, Zhu G, Chen Y (2007) Inducible nitric oxide synthase deficiency protects the heart from systolic overload-induced ventricular hypertrophy and congestive heart failure. Circ Res 100:1089–1098

    Article  PubMed  CAS  Google Scholar 

  36. Pesse B, Levrand S, Feihl F, Waeber B, Gavillet B, Pacher P, Liaudet L (2005) Peroxynitrite activates ERK via Raf-1 and MEK, independently from EGF receptor and p21Ras in H9C2 cardiomyocytes. J Mol Cell Cardiol 38:765–775

    Article  PubMed  CAS  Google Scholar 

  37. Feng Q, Lu X, Jones DL, Shen J, Arnold JM (2001) Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation 104:700–704

    Article  PubMed  CAS  Google Scholar 

  38. Sam F, Sawyer DB, Xie Z, Chang DLF, Ngoy S, Brenner DA, Siwik DA, Singh K, Apstein CS, Colucci WS (2001) Mice lacking inducible nitric oxide synthase have improved left ventricular contractile function and reduced apoptic cell death late after myocardial infarction. Circ Res 89:351–356

    Article  PubMed  CAS  Google Scholar 

  39. Stuehr D, Pou S, Rosen GM (2001) Oxygen reduction by nitric oxide synthases. J Biol Chem 276:14533–14536

    Article  PubMed  CAS  Google Scholar 

  40. Chen Y, Traverse JH, Du R, Hou M, Bache RJ (2002) Nitric oxide modulates myocardial oxygen consumption in the failing heart. Circulation 106:273–279

    Article  PubMed  CAS  Google Scholar 

  41. Haywood GA, Tsao PS, von der Leyen HE, Mann MJ, Keeling PJ, Trindade PT, Lewis NP, Byrne CD, Rickenbacher PR, Bishopric NH, Cooke JP, McKenna WJ, Fowler MB (1996) Expression of inducible nitric oxide synthase in human heart failure. Circulation 93:1087–1094

    PubMed  CAS  Google Scholar 

  42. Ishibashi Y, Takahashi N, Tokumaru A, Karino K, Sugamori T, Sakane T, Kodani N, Kunizawa Y, Yoshitomi H, Sato H, Oyake N, Murakami Y, Shimada T (2008) Activation of inducible iNOS in peripheral vessels and outcomes in heart failure patients. J Card Fail 14:724–731

    Article  PubMed  CAS  Google Scholar 

  43. D’Urso G, Frascarelli S, Balzan S, Zucchi R, Montali U (2004) Production of ouabain-like factor in normal and ischemic rat heart. J Cardiovasc Pharmacol 43:657–662

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (# NA 6994) from the Heart and Stroke Foundation of Ontario. M. Karmazyn holds a Tier 1 Canada Research Chair in Experimental Cardiology.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morris Karmazyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, X.T., Hunter, J.C., Huang, C. et al. Ouabain increases iNOS-dependent nitric oxide generation which contributes to the hypertrophic effect of the glycoside: possible role of peroxynitrite formation. Mol Cell Biochem 363, 323–333 (2012). https://doi.org/10.1007/s11010-011-1185-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1185-7

Keywords

Navigation