Skip to main content
Log in

The effect of sevoflurane on the expression of M1 acetylcholine receptor in the hippocampus and cognitive function of aged rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Our aim is to investigate the effect of 1.5 and 3.0% sevoflurane on the expression of M1 acetylcholine receptor (mAChR M1) in the hippocampus and the cognitive function of aged rats. Forty Sprague–Dawley (SD) rats of 12-month old were randomly divided into five groups. All SD rats received 1.5 or 3.0% sevoflurane in a special glass anesthesia box for 2 h, respectively, except for the normal control group. Y-maze was used to test the ability of learning and memory after being received sevoflurane for 1 or 7 days at the same moment portion. The expression of mAChR M1 in the hippocampus of rats was tested by RT-PCR. The results showed that 3% sevoflurane induced the decline of cognitive function and significantly decreased the mAChR M1 expression at mRNA levels at 1 day in the 3.0% sevoflurane I group when compared with the normal control group. However, there was no significant difference among the other groups when compared with normal control group. Therefore, administration of sevoflurane might temporally affect the ability of cognitive function of rats through suppressing the mAChR M1 expression at mRNA levels in hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Fibiger HC (1991) Cholinergic mechanisms in learning, memory and dementia: a review of recent evidence. Trends Neurosci 14:220–223

    Article  PubMed  CAS  Google Scholar 

  2. Smith G (1988) Animal models of Alzheimer’s disease: experimental cholinergic denervation. Brain Res 472:103–118

    PubMed  CAS  Google Scholar 

  3. Izquierdo I, McGaugh JL (2000) Behavioural pharmacology and its contribution to the molecular basis of memory consolidation. Behav Pharmacol 11:517–534

    Article  PubMed  CAS  Google Scholar 

  4. Sitaram N, Weingartner H, Gillin JC (1978) Human serial learning: enhancement with arecholine and choline impairment with scopolamine. Science 201:274–276

    Article  PubMed  CAS  Google Scholar 

  5. Sweeney JE, Bachman ES, Coyle JT (1990) Effects of different doses of galanthamine, a long-acting acetylcholinesterase inhibitor, on memory in mice. Psychopharmacology 102:191–200

    Article  PubMed  CAS  Google Scholar 

  6. Mangelus M, Kroyter A, Galron R, Sokolovsky M (2001) Reactive oxygen species regulate signaling pathways induced by M1 muscarinic receptors in PC12M1 cells. J Neurochem 76:1701–1711

    Article  PubMed  CAS  Google Scholar 

  7. Robinson L, Platt B, Riedel G (2011) Involvement of the cholinergic system in conditioning and perceptual memory. Behav Brain Res 221(2):443–465

    Google Scholar 

  8. Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16(6):710–715

    Article  PubMed  CAS  Google Scholar 

  9. Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR (1991) Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci 11:3218–3226

    PubMed  CAS  Google Scholar 

  10. Eger EI II, Saidman LJ, Brandstater B (1965) Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology 26:756–763

    Article  PubMed  Google Scholar 

  11. Cook TL, Smith M, Winter PM, Starkweather JA, Eger EI III (1978) Effect of subanesthetic concentration of enflurane and halothane on human behavior. Anesth Analg 57:434–440

    PubMed  CAS  Google Scholar 

  12. Dwyer R, Bennett HL, Eger EI II, Heilbron D (1992) Effects of isoflurane and nitrous oxide in subanesthetic concentrations on memory and responsiveness in volunteers. Anesthesiology 77:888–898

    Article  PubMed  CAS  Google Scholar 

  13. Ghoneim MM, Block RI (1997) Learning and memory during general anesthesia: an update. Anesthesiology 87:387–410

    Article  PubMed  CAS  Google Scholar 

  14. El-Zahaby HM, Ghoneim MM, Johnson GM, Gormezano I (1994) Effects of subanesthetic concentrations of isoflurane and their interactions with epinephrine on acquisition and retention of the rabbit nictitating membrane response. Anesthesiology 81:229–237

    Article  PubMed  CAS  Google Scholar 

  15. Kandel L, Chortkoff BS, Sonner J, Laster MJ, Eger EI II (1996) Nonanesthetics can suppress learning. Anesth Analg 82:321–326

    PubMed  CAS  Google Scholar 

  16. Dutton RC, Maurer AJ, Sonner JM, Fanselow MS, Laster MJ, Eger EI II (2001) The concentration of isoflurane required to suppress learning depends on the type of learning. Anesthesiology 94:514–519

    Article  PubMed  CAS  Google Scholar 

  17. Alkire MT, Gorski LA (2004) Relative amnesic potency of five inhalational anesthetics follows the Meyer–Overton rule. Anesthesiology 101:417–429

    Article  PubMed  CAS  Google Scholar 

  18. McGaugh JL (2000) Memory. A century of consolidation. Science 287:248–251

    Article  PubMed  CAS  Google Scholar 

  19. Veselis RA, Reinsel RA, Feshchenko VA, Wronski M (1997) The comparative amnestic effects of midazolam, propofol, thiopental, and fentanyl at equisedative concentrations. Anesthesiology 87:749–764

    Article  PubMed  CAS  Google Scholar 

  20. Peng S, Zhang Y, Zhang J, Wang H, Ren B (2009) Effect of ketamine on ERK expression in hippocampal neural cell and the ability of learning behavior in minor rats. Mol Biol Rep. [Epub ahead of print]

  21. Ma YL, Peng JY, Liu WJ, Zhang P, Huang L, Gao BB, Shen TY, Zhou YK, Chen HQ, Chu ZX et al (2009) Proteomics identification of desmin as a potential oncofetal diagnostic and prognostic biomarker in colorectal cancer. Mol Cell Proteomics 8(8):1878–1890

    Article  PubMed  CAS  Google Scholar 

  22. Orsini C, Castellano C, Cabib S (2001) Pharmacological evidence of muscarinic-cholinergic sensitization following chronic stress. Psychopharmacology 155:144–147

    Article  PubMed  CAS  Google Scholar 

  23. Herrera-Morales W, Mar I, Serrano B, Bermúdez-Rattoni F (2007) Activation of hippocampal postsynaptic muscarinic receptors is involved in long-term spatial memory formation. Eur J Neurosci 25:1581–1588

    Article  PubMed  Google Scholar 

  24. von Linstow Roloff E, Harbaran D, Micheau J, Platt B, Riedel G (2007) Dissociation of cholinergic function in spatial and procedural learning in rats. Neuroscience 146:875–889

    Article  Google Scholar 

  25. Ohno M, Yamamoto T, Watanabe S (1994) Blockade of hippocampal M1 muscarinic receptors impairs working memory performance of rats. Brain Res 650:260–266

    Article  PubMed  CAS  Google Scholar 

  26. Messer WS Jr, Thomas GJ, Hoss W (1987) Selectivity of pirenzepine in the central nervous system. II. Differential effects of pirenzepine and scopolamine on performance of a representational memory task. Brain Res 407:37–45

    Article  PubMed  CAS  Google Scholar 

  27. Bymaster FP, Heath I, Hendrix JC, Shannon HE (1993) Comparative behavioral and neurochemical activities of cholinergic antagonists in rats. J Pharmacol Exp Ther 267:16–24

    PubMed  CAS  Google Scholar 

  28. Roldán G, Bolaños-Badillo E, González-Sánchez H, Quirarte GL, Prado-Alcalá RA (1997) Selective M1 muscarinic receptor antagonists disrupt memory consolidation of inhibitory avoidance in rats. Neurosci Lett 230:93–96

    Article  PubMed  Google Scholar 

  29. Yokoyama T, Minami K, Sudo Y, Horishita T, Ogata J, Yanagita T, Uezono Y (2011) Effects of sevoflurane on voltage-gated sodium channel Na(v)1.8, Na (v)1.7, and Na (v)1.4 expressed in Xenopus oocytes. J Anesth 25:609–613

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Medical Science Research Foundation of Jiangsu Province, China (Grant No. H200645) and Science Foundation of the Health Bureau of Wuxi City, China (Grant No. XM0805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Additional information

This work was supported by The National Natural Science Foundation of China (81000469) and Scientific Foundation from Health Office of Jiangsu (201070).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, S., Zhang, Y., Li, GJ. et al. The effect of sevoflurane on the expression of M1 acetylcholine receptor in the hippocampus and cognitive function of aged rats. Mol Cell Biochem 361, 229–233 (2012). https://doi.org/10.1007/s11010-011-1107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1107-8

Keywords

Navigation