Skip to main content
Log in

Malignant transformation of 293 cells induced by ectopic expression of human Nanog

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Tumor development has long been known to resemble abnormal embryogenesis. The ESC self-renewal gene NANOG is purportedly expressed in some epithelial cancer cells and solid tumors, but a casual role in tumor development has remained unclear. In order to more comprehensively elucidate the relationship between human Nanog and tumorigenesis, the hNanog was ectopically expressed in the 293 cell line to investigate its potential for malignant transformation of cells both in vitro and in vivo. Here we provide compelling evidence that the overexpression of hNanog resulted in increased cell proliferation, anchor-independent growth in soft agar, and formation of tumors after subcutaneous injection of athymic nude mice. Pathologic analysis revealed that these tumors were poorly differentiated. In analysis of the underlying molecular mechanism, two proteins, FAK and Ezrin, were identified to be upregulated in the hNanog expressing 293 cells. Our results demonstrate that hNanog is a potent human oncogene and has the ability to induce cellular transformation of human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  PubMed  CAS  Google Scholar 

  2. Abate-Shen C (2002) Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer 2(10):777–785

    Article  PubMed  CAS  Google Scholar 

  3. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5):643–655

    Article  PubMed  CAS  Google Scholar 

  4. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631–642

    Article  PubMed  CAS  Google Scholar 

  5. Hart AH, Hartley L, Parker K, Ibrahim M, Looijenga LH, Pauchnik M, Chow CW, Robb L (2005) The pluripotency homeobox gene NANOG is expressed in human germ cell tumors. Cancer 104(10):2092–2098

    Article  PubMed  CAS  Google Scholar 

  6. Ezeh UI, Turek PJ, Reijo RA, Clark AT (2005) Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer 104(10):2255–2265

    Article  PubMed  CAS  Google Scholar 

  7. Liu TM, Wu YN, Guo XM, Hui JH, Lee EH, Lim B (2009) Effects of ectopic Nanog and Oct4 overexpression on mesenchymal stem cells. Stem Cells Dev 18(7):1013–1022

    Article  PubMed  CAS  Google Scholar 

  8. Zhang J, Wang X, Chen B, Suo G, Zhao Y, Duan Z, Dai J (2005) Expression of Nanog gene promotes NIH3T3 cell proliferation. Biochem Biophys Res Commun 338(2):1098–1102

    Article  PubMed  CAS  Google Scholar 

  9. Young TW, Mei FC, Yang G, Thompson-Lanza JA, Liu J, Cheng X (2004) Activation of antioxidant pathways in ras-mediated oncogenic transformation of human surface ovarian epithelial cells revealed by functional proteomics and mass spectrometry. Cancer Res 64(13):4577–4584

    Article  PubMed  CAS  Google Scholar 

  10. Young T, Mei F, Liu J, Bast RC Jr, Kurosky A, Cheng X (2005) Proteomics analysis of H-RAS-mediated oncogenic transformation in a genetically defined human ovarian cancer model. Oncogene 24(40):6174–6184

    Article  PubMed  CAS  Google Scholar 

  11. Valsesia-Wittmann S, Magdeleine M, Dupasquier S, Garin E, Jallas AC, Combaret V, Krause A, Leissner P, Puisieux A (2004) Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells. Cancer Cell 6(6):625–630

    Article  PubMed  CAS  Google Scholar 

  12. Young TW, Mei FC, Rosen DG, Yang G, Li N, Liu J, Cheng X (2007) Up-regulation of tumor susceptibility gene 101 protein in ovarian carcinomas revealed by proteomics analyses. Mol Cell Proteomics 6(2):294–304

    PubMed  CAS  Google Scholar 

  13. Alldridge L, Metodieva G, Greenwood C, Al-Janabi K, Thwaites L, Sauven P, Metodiev M (2008) Proteome profiling of breast tumors by gel electrophoresis and nanoscale electrospray ionization mass spectrometry. J Proteome Res 7(4):1458–1469

    Article  PubMed  CAS  Google Scholar 

  14. Ye F, Zhou C, Cheng Q, Shen J, Chen H (2008) Stem-cell-abundant proteins Nanog, Nucleostemin and Musashi1 are highly expressed in malignant cervical epithelial cells. BMC Cancer 8:108

    Article  PubMed  Google Scholar 

  15. Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ, Tsai TH, Chou SH, Chien CS, Ku HH, Lo JF (2008) Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res 14(13):4085–4095

    Article  PubMed  CAS  Google Scholar 

  16. Bussolati B, Bruno S, Grange C, Ferrando U, Camussi G (2008) Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J 22(10):3696–3705

    Article  PubMed  CAS  Google Scholar 

  17. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68(11):4311–4320

    Article  PubMed  CAS  Google Scholar 

  18. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40(5):499–507

    Article  PubMed  CAS  Google Scholar 

  19. Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, Calhoun-Davis T, Zaehres H, Daley GQ, Tang DG (2009) Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells 27(5):993–1005

    Article  PubMed  CAS  Google Scholar 

  20. Freberg CT, Dahl JA, Timoskainen S, Collas P (2007) Epigenetic reprogramming of OCT4 and NANOG regulatory regions by embryonal carcinoma cell extract. Mol Biol Cell 18(5):1543–1553

    Article  PubMed  CAS  Google Scholar 

  21. Hermeking H (2003) Serial analysis of gene expression and cancer. Curr Opin Oncol 15(1):44–49

    Article  PubMed  CAS  Google Scholar 

  22. Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT (1992) pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci U S A 89(11):5192–5196

    Article  PubMed  CAS  Google Scholar 

  23. Burridge K, Turner CE, Romer LH (1992) Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol 119(4):893–903

    Article  PubMed  CAS  Google Scholar 

  24. Kornberg L, Earp HS, Parsons JT, Schaller M, Juliano RL (1992) Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J Biol Chem 267(33):23439–23442

    PubMed  CAS  Google Scholar 

  25. Schlaepfer DD, Hanks SK, Hunter T, van der Geer P (1994) Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372(6508):786–791

    PubMed  CAS  Google Scholar 

  26. Guan JL (1997) Role of focal adhesion kinase in integrin signaling. Int J Biochem Cell Biol 29(8–9):1085–1096

    Article  PubMed  CAS  Google Scholar 

  27. Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY (1996) Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 134(3):793–799

    Article  PubMed  CAS  Google Scholar 

  28. Hungerford JE, Compton MT, Matter ML, Hoffstrom BG, Otey CA (1996) Inhibition of pp125FAK in cultured fibroblasts results in apoptosis. J Cell Biol 135(5):1383–1390

    Article  PubMed  CAS  Google Scholar 

  29. Weiner TM, Liu ET, Craven RJ, Cance WG (1993) Expression of focal adhesion kinase gene and invasive cancer. Lancet 342(8878):1024–1025

    Article  PubMed  CAS  Google Scholar 

  30. Akasaka T, van Leeuwen RL, Yoshinaga IG, Mihm MC Jr, Byers HR (1995) Focal adhesion kinase (p125FAK) expression correlates with motility of human melanoma cell lines. J Invest Dermatol 105(1):104–108

    Article  PubMed  CAS  Google Scholar 

  31. Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L, Liu ET, Cance WG (1995) Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res 55(13):2752–2755

    PubMed  CAS  Google Scholar 

  32. Tremblay L, Hauck W, Aprikian AG, Begin LR, Chapdelaine A, Chevalier S (1996) Focal adhesion kinase (pp125FAK) expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. Int J Cancer 68(2):164–171

    Article  PubMed  CAS  Google Scholar 

  33. McCormack SJ, Brazinski SE, Moore JL Jr, Werness BA, Goldstein DJ (1997) Activation of the focal adhesion kinase signal transduction pathway in cervical carcinoma cell lines and human genital epithelial cells immortalized with human papillomavirus type 18. Oncogene 15(3):265–274

    Article  PubMed  CAS  Google Scholar 

  34. Cance WG, Harris JE, Iacocca MV, Roche E, Yang X, Chang J, Simkins S, Xu L (2000) Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clin Cancer Res 6(6):2417–2423

    PubMed  CAS  Google Scholar 

  35. Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A, Yeung C, Gorlick R, Hewitt SM, Helman LJ (2004) The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med 10(2):182–186

    Article  PubMed  CAS  Google Scholar 

  36. Li Q, Wu M, Wang H, Xu G, Zhu T, Zhang Y, Liu P, Song A, Gang C, Han Z, Zhou J, Meng L, Lu Y, Wang S, Ma D (2008) Ezrin silencing by small hairpin RNA reverses metastatic behaviors of human breast cancer cells. Cancer Lett 261(1):55–63

    Article  PubMed  CAS  Google Scholar 

  37. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122(6):947–956

    Article  PubMed  CAS  Google Scholar 

  38. Siu MK, Wong ES, Chan HY, Ngan HY, Chan KY, Cheung AN (2008) Overexpression of NANOG in gestational trophoblastic diseases: effect on apoptosis, cell invasion, and clinical outcome. Am J Pathol 173(4):1165–1172

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Grant support: this study was funded by the National Natural Science Foundation of China (Grant No.30801333).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Xing Chen.

Additional information

Y.-L.Lin, Z.-B.Han and F.-Y.Xiong contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YL., Han, ZB., Xiong, FY. et al. Malignant transformation of 293 cells induced by ectopic expression of human Nanog. Mol Cell Biochem 351, 109–116 (2011). https://doi.org/10.1007/s11010-011-0717-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0717-5

Keywords

Navigation