Skip to main content

Advertisement

Log in

Simvastatin suppresses the differentiation of C2C12 myoblast cells via a Rac pathway

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Statins, which are known as cholesterol-lowering drugs, have several additional effects including the enhancement of bone formation and the stimulation of smooth muscle cell proliferation. In this study, we investigated the signal pathway of simvastatin operating in C2C12 myoblast cells. Myotube formation of C2C12 cells was efficiently blocked by 1 μM simvastatin, and mevalonic acid was able to cancel this effect. Geranylgeranyl pyrophosphate restored the myotube formation, whereas farnesyl pyrophosphate did not. These findings demonstrate that the Rho family, such as Rho, Rac and Cdc42, occurring downstream of geranylgeranyl pyrophosphate in the mevalonic acid pathway, was involved in the simvastatin-mediated blockage of myotube formation. An inhibitor of Rho kinase did not influence the myotube formation; whereas an inhibitor of Rac blocked this process. Taken together, we conclude that the differentiation of C2C12 cells into myotubes was blocked by simvastatin through the pathway mediated by Rac, not by Rho.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baba TT (2000) Restoration of mineral depositions by dexamethasone in the matrix of nonmineralizing osteoblastic cells sub-cloned from MC3T3–E1 cells. Calcif Tissue Int 67:416–421

    Article  PubMed  CAS  Google Scholar 

  • Corsini A, Pazzucconi F, Armaboldi L, Pfister P, Fumagalli R, Paoletti R, Sirtori CR (1998) Direct effects of statins on the vascular wall. J Cardiovasc Pharmacol 31:773–778

    Article  PubMed  CAS  Google Scholar 

  • Fassbender K, Simons M, Bergmann C, Stroick M, Lutjohann D, Keller P, Runz H, Kuhl S, Bertsch T, von Bergmann K, Hennerici M, Beyreuther K, Hartmann T (2001) Simvastatin strongly reduces levels of Alzheimer’s disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo. Proc Natl Acad Sci USA 98:5856–5861

    Article  PubMed  CAS  Google Scholar 

  • Fukuyama R, Fujita T, Azuma Y, Hirano A, Nakamura H, Koida M, Komori T (2004) Statins inhibit osteoblast migration by inhibiting Rac-Akt signaling. Biochem Biophys Res Commun 315:636–642

    Article  PubMed  CAS  Google Scholar 

  • Guijarro C, Blanco-Colio LM, Ortego M, Alonso C, Ortiz A, Plaza JJ, Diaz C, Hernandez G, Egido J (1998) 3-Hydroxy-3-methylglutaryl coenzyme A reductase and isoprenylation inhibitors induce apoptosis of vascular smooth muscle cells in culture. Circ Res 83:490–500

    PubMed  CAS  Google Scholar 

  • Hebert PR, Gaziano JM, Chan KS, Hennekens CH (1997) Cholesterol lowering with statin drugs, risk of stroke, and total mortality. An overview of randomized trials. JAMA 278:313–321

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi N, Maeda T (2006) Statins and bone metabolism. Oral Dis 12:85–101

    Article  PubMed  CAS  Google Scholar 

  • Jamal SM, Eisenberg MJ, Christopoulos S (2004) Rhabdomyolysis associated with hydroxymethylglutaryl-coenzyme A reductase inhibitors. Am Heart J 147:956–965

    Article  PubMed  CAS  Google Scholar 

  • Katagiri T, Yamaguchi A, Ikeda T, Yoshiki S, Wozney JM, Rosen V, Wang EA, Tanaka H, Omura S, Suda T (1990) The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem Biophys Res Commun 172:295–299

    Article  PubMed  CAS  Google Scholar 

  • Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127:1755–1766

    Article  PubMed  CAS  Google Scholar 

  • Katagiri T, Akiyama S, Namiki M, Komaki M, Yamaguchi A, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T (1997) Bone morphogenetic protein-2 inhibits terminal differentiation of myogenic cells by suppressing the transcriptional activity of MyoD and myogenin. Exp Cell Res 230:342–351

    Article  PubMed  CAS  Google Scholar 

  • Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F (2001) Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the α-secretase ADAM 10. Proc Natl Acad Sci USA 98:5815–5820

    Article  PubMed  CAS  Google Scholar 

  • Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, Sessa WC, Walsh K (2000) The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 6:1004–1010

    Article  PubMed  CAS  Google Scholar 

  • Kwak B, Mulhaupt F, Myit S, Mach F (2000) Statins as a newly recognized type of immunomodulator. Nat Med 6:1399–1402

    Article  PubMed  CAS  Google Scholar 

  • Lacoste L, Lam LY, Hung J, Letchacovski G, Solymoss CB, Waters D (1995) Hyperlipidemia and coronary disease. Correction of the increased thrombogenic potential with cholesterol reduction. Circulation 92:3172–3177

    PubMed  CAS  Google Scholar 

  • Li X, Liu L, Tupper JC, Bannerman DD, Winn RK, Sebti SM, Hamilton AD, Harian JM (2002) Inhibition of protein geranylgeranylation and RhoA/RhoA kinase pathway induces apoptosis in human endothelial cells. J Biol Chem 277:15309–15316

    Article  PubMed  CAS  Google Scholar 

  • Li X, Cui Q, Kao C, Wang G-J, Balian G (2003) Lovastatin inhibits adipogenic and stimulates osteogenic differentiation by suppressing PPARγ2 and increasing Cbfa1/Runx2 expression in bone marrow mesenchymal cell cultures. Bone 33:652–659

    Article  PubMed  CAS  Google Scholar 

  • Madonna R, Di Napoli P, Massaro M, Grilli A, Felaco M, De Caterina A, Tang D, De Caterina R, Geng YJ (2005) Simvastatin attenuates expression of cytokine-inducible nitric-oxide synthase in embryonic cardiac myoblasts. J Biol Chem 280:13501–13511

    Article  Google Scholar 

  • Maeda T, Matsunuma A, Kurahashi I, Yanagawa T, Yoshida H, Horiuchi N (2004) Induction of osteoblast differentiation induces by statins in MC3T3–E1 cells. J Cellular Biochem 92:458–471

    Article  CAS  Google Scholar 

  • Maron DJ, Fazio S, Linton MF (2000) Current perspectives on statins. Circulation 101:207–213

    PubMed  CAS  Google Scholar 

  • Matzno S, Yasuda S, Juman S, Yamamoto Y, Nagareva-Ishida N, Tazuya-Murayama K, Nakabayashi T, Matsuyama K (2005) Statin-induced apoptosis linked with membrane farnesylated Ras small G protein depletion, rather than geranylated Rho protein. J Pharm Pharmacol 57:1475–1484

    Article  PubMed  CAS  Google Scholar 

  • Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, Boyce B, Zhao M, Gutierrez G (1999) Stimulation of bone formation in vitro and in rodents by statins. Science 286:1946–1949

    Article  PubMed  CAS  Google Scholar 

  • Ogura T, Tanaka Y, Nakata T, Namikawa T, Kataoka H, Ohtsubo Y (2007) Simvastatin reduces insulin-like growth factor-1 signaling in differentiating C2C12 mouse myoblast cells in an HMG-CoA reductase inhibition-independent manner. J Toxicol Sci 32:57–67

    Article  PubMed  CAS  Google Scholar 

  • Ohnaka K, Shimoda S, Nawata H, Shimokawa H, Kaibuchi K, Iwamoto Y, Takayanagi R (2001) Pitavastatin enhanced BMP-2 and osteocalcin expression by inhibition of Rho-associated kinase in human osteoblasts. Biochem Biophys Res Commun 287:337–342

    Article  PubMed  CAS  Google Scholar 

  • Osman L, Yacoub MH, Latif N, Amrani M, Chester AH (2006a) Role of human valve interstitial cells in valve calcification and their response to atorvastatin. Circulation 114:547–552

    Article  Google Scholar 

  • Osman L, Chester AH, Amrani M, Yacoub MH, Smolenski RT (2006b) A novel role of extracellular nucleotides in valve calcification: a potential target for atorvastatin. Circulation 114:566–572

    Article  Google Scholar 

  • Pedersen TR (1999) Statin trials and goals of cholesterol-lowering therapy after AMI. Am Heart J 138:177–182

    Article  Google Scholar 

  • Phillips BW, Belmonte N, Vernochet C, Ailhaud G, Dani C (2001) Compactin enhances osteogenesis in murine embryonic stem cells. Biochem Biophys Res Commun 284:478–484

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Gaspa S, Nogues X, Enjuanes A, Monllau JC, Blanch J, Carreras R, Mellibovsky L, Grinberg D, Balcells S, Diez-Perez A, Pedro-Botet J (2007) Simvastatin and atorvastatin enhance gene expression of collagen type 1 and osteocalcin in primary human osteoblasts and MG-63 cultures. J Cell Biochem 101:1430–1438

    Article  PubMed  CAS  Google Scholar 

  • Sica DA, Gehr TW (2002) Rhabdomyolysis and statin therapy: relevance to the elderly. Am J Geriatr Cardiol 11:48–55

    Article  PubMed  Google Scholar 

  • Sidera C, Parsons R, Austen B (2005) The regulation of β-secretase by cholesterol and statin in Alzheimer’s disease. J Neurol Sci 229–230:269–273

    Article  PubMed  Google Scholar 

  • Song C, Guo Z, Ma Q, Chen Z, Liu Z, Jia H, Dang G (2003) Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells. Biochem Biophys Res Commun 308:458–462

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama M, Kodama T, Konishi K, Abe K, Asami S, Oikawa S (2000) Compactin and simvastatin, but not pravastatin, induce bone morphogenetic protein-2 in human osteosarcoma cells. Biochem Biophys Res Commun 271:688–692

    Article  PubMed  CAS  Google Scholar 

  • Takeda N, Kondo M, Ito S, Ito Y, Shimokata K, Kume H (2006) Role of RhoA inactivation in reduced cell proliferation of human airway smooth muscle by simvastatin. Am J Respir Cell Mol Biol 35:722–729

    Article  PubMed  CAS  Google Scholar 

  • Tuner NA, Aley PK, Hall KT, Warbuton P, Galloway S, Midgley L, O’Regan DJ, Wood IC, Ball SG, Porter KE (2007) Simvastatin inhibits TNFα-induced invasion of human cardiac myofibroblasts via both MMP-dependent and–independent mechanisms. J Mol Cell Cardiol 43:168–176

    Article  Google Scholar 

  • Vaughan CJ, Gotto AM, Basson CT (2000) The evolving role of statins in the management of atherosclerosis. J Am Coll Cardiol 35:1–10

    Article  PubMed  CAS  Google Scholar 

  • Wedhas N, Klamut HJ, Dogra C, Srivastava AK, Mohan S, Kumar A (2005) Inhibition of mechanosensitive cation chammels inhibits myogenic differentiation by suppressing the expression of myogenic regulatory factors and caspase-3 activity. FASEB J 19:1986–1997

    Article  PubMed  CAS  Google Scholar 

  • Wozney JM, Rosen V, Geleste AJ, Mitxock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: Molecular clones and activities. Science 242:1528–1534

    Article  PubMed  CAS  Google Scholar 

  • Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki K, Sasaki T, Nemoto M, Eto Y, Tajima N (1999) Differentiation-induced insulin secretion from nonendocrine cells with engineered human proinsulin cDNA. Biochem Biophys Res Commun 265:361–365

    Article  PubMed  CAS  Google Scholar 

  • Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomomi T. Baba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baba, T.T., Nemoto, T.K., Miyazaki, T. et al. Simvastatin suppresses the differentiation of C2C12 myoblast cells via a Rac pathway. J Muscle Res Cell Motil 29, 127–134 (2008). https://doi.org/10.1007/s10974-008-9146-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-008-9146-9

Keywords

Navigation