Skip to main content

Advertisement

Log in

Incorporating target-mediated drug disposition in a minimal physiologically-based pharmacokinetic model for monoclonal antibodies

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Target-mediated drug disposition (TMDD) usually accounts for nonlinear pharmacokinetics (PK) of drugs whose distribution and/or clearance are affected by their targets owing to high affinity and limited capacity. TMDD is frequently reported for monoclonal antibodies (mAb) for such reason. Minimal physiologically-based pharmacokinetic models (mPBPK), which accommodate the unique PK behaviors of mAb, provide a general approach for analyzing mAbs PK and predicting mAb interstitial concentrations in two groups of tissues. This study assessed the feasibility of incorporating TMDD into mPBPK models to consider target-binding in either plasma (cTMDD) or interstitial fluid (ISF) (pTMDD). The dose-related signature profiles of the pTMDD model reveal a parallel early decay phase, in contrast with the cTMDD model that exhibits a faster initial decline for low doses. The parallel early phase in the pTMDD model is associated with the slow perivascular extravasation of mAb, which restricts the initial decline regardless of interstitial target-mediated elimination. The cTMDD and pTMDD models both preserve the long terminal phase that is typically perceived in conventional two-compartment (2CM) and TMDD models. Having TMDD in ISF impacts the typical relationships between plasma concentrations and receptor occupancy, and between saturation of apparent nonlinear clearance and saturation of receptors. The vascular reflection coefficient (σ v ) was found to affect receptor occupancy in ISF. In the cTMDD model, saturation of nonlinear clearance is equivalent to saturation of receptors. However, in the pTMDD model, they are no longer equal and all parameters pertaining to receptors or receptor binding (R total , K D , K ss , k int ) shifts such relationships. Different TMDD models were utilized in analyzing PK for seven mAbs from digitized literature data. When the target is in plasma, the cTMDD model performed similarly to the 2CM and TMDD models, but with one less system parameter. When the target exists in ISF, the pTMDD functioned well in analyzing only plasma data to reflect interstitial target binding properties. Assigning TMDD consistent with target-expressing tissues is important to obtain reliable characterizations of receptors and receptor binding. The mPBPK model exhibits excellent feasibility in integrating TMDD not only in plasma but also in ISF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Buss NA, Henderson SJ, McFarlane M, Shenton JM, de Haan L (2012) Monoclonal antibody therapeutics: history and future. Curr Opin Pharmacol 12:615–622

    Article  CAS  PubMed  Google Scholar 

  2. Reichert JM (2012) Marketed therapeutic antibodies compendium. MAbs 4:413–415

    Article  PubMed Central  PubMed  Google Scholar 

  3. Wang W, Wang EQ, Balthasar JP (2008) Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 84:548–558

    Article  CAS  PubMed  Google Scholar 

  4. Cao Y, Jusko WJ (2012) Applications of minimal physiologically-based pharmacokinetic models. J Pharmacokinet Pharmacodyn 39:711–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Cao Y, Balthasar JP, Jusko WJ (2013) Second-generation minimal physiologically-based pharmacokinetic model for monoclonal antibodies. J Pharmacokinet Pharmacodyn 40:597–607

    Article  CAS  PubMed  Google Scholar 

  6. Cao Y, Jusko WJ (2014) Survey of monoclonal antibody disposition in man utilizing a minimal physiologically-based pharmacokinetic model. J Pharmacokinet Pharmacodyn (under review)

  7. Levy G (1994) Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther 56:248–252

    Article  CAS  PubMed  Google Scholar 

  8. Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28:507–532

    Article  CAS  PubMed  Google Scholar 

  9. Luu KT, Bergqvist S, Chen E, Hu-Lowe D, Kraynov E (2012) A model-based approach to predicting the human pharmacokinetics of a monoclonal antibody exhibiting target-mediated drug disposition. J Pharmacol Exp Ther 341:702–708

    Article  CAS  PubMed  Google Scholar 

  10. Woo S, Krzyzanski W, Jusko WJ (2007) Target-mediated pharmacokinetic and pharmacodynamic model of recombinant human erythropoietin (rHuEPO). J Pharmacokinet Pharmacodyn 34:849–868

    Article  CAS  PubMed  Google Scholar 

  11. Yamazaki S, Shen Z, Jiang Y, Smith BJ, Vicini P (2013) Application of target-mediated drug disposition model to small molecule heat shock protein 90 inhibitors. Drug Metab Dispos 41:1285–1294

    Article  CAS  PubMed  Google Scholar 

  12. Ng CM, Stefanich E, Anand BS, Fielder PJ, Vaickus L (2006) Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers. Pharm Res 23:95–103

    Article  CAS  PubMed  Google Scholar 

  13. Gibiansky L, Gibiansky E, Kakkar T, Ma P (2008) Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn 35:573–591

    Article  CAS  PubMed  Google Scholar 

  14. Garg A, Balthasar JP (2007) Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34:687–709

    Article  CAS  PubMed  Google Scholar 

  15. Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39:67–86

    Article  CAS  PubMed  Google Scholar 

  16. Pang KS, Rowland M (1977) Hepatic clearance of drugs. I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance. J Pharmacokinet Biopharm 5:625–653

    Article  CAS  PubMed  Google Scholar 

  17. Boswell CA, Tesar DB, Mukhyala K, Theil FP, Fielder PJ, Khawli LA (2010) Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug Chem 21:2153–2163

    Article  CAS  PubMed  Google Scholar 

  18. Nugent LJ, Jain RK (1984) Extravascular diffusion in normal and neoplastic tissues. Cancer Res 44:238–244

    CAS  PubMed  Google Scholar 

  19. Gerlowski LE, Jain RK (1986) Microvascular permeability of normal and neoplastic tissues. Microvasc Res 31:288–305

    Article  CAS  PubMed  Google Scholar 

  20. Lammerts van Bueren JJ, Bleeker WK, Bogh HO, Houtkamp M, Schuurman J, van de Winkel JG, Parren PW (2006) Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: implications for the mechanisms of action. Cancer Res 66:7630–7638

    Article  CAS  PubMed  Google Scholar 

  21. Tokuda Y, Watanabe T, Omuro Y, Ando M, Katsumata N, Okumura A, Ohta M, Fujii H, Sasaki Y, Niwa T et al (1999) Dose escalation and pharmacokinetic study of a humanized anti-HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. Br J Cancer 81:1419–1425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Xiang H, Bender BC, Reyes AE 2nd, Merchant M, Jumbe NL, Romero M, Davancaze T, Nijem I, Mai E, Young J et al (2013) Onartuzumab (MetMAb): using nonclinical pharmacokinetic and concentration-effect data to support clinical development. Clin Cancer Res 19:5068–5078

    Article  CAS  PubMed  Google Scholar 

  23. Kamath AV, Lu D, Gupta P, Jin D, Xiang H, Wong A, Leddy C, Crocker L, Schaefer G, Sliwkowski MX et al (2012) Preclinical pharmacokinetics of MEHD7945A, a novel EGFR/HER3 dual-action antibody, and prediction of its human pharmacokinetics and efficacious clinical dose. Cancer Chemother Pharmacol 69:1063–1069

    Article  CAS  PubMed  Google Scholar 

  24. Padhi D, Jang G, Stouch B, Fang L, Posvar E (2011) Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 26:19–26

    Article  CAS  PubMed  Google Scholar 

  25. Burmester GR, Feist E, Sleeman MA, Wang B, White B, Magrini F (2011) Mavrilimumab, a human monoclonal antibody targeting GM-CSF receptor-alpha, in subjects with rheumatoid arthritis: a randomised, double-blind, placebo-controlled, phase I, first-in-human study. Ann Rheum Dis 70:1542–1549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Joshi A, Bauer R, Kuebler P, White M, Leddy C, Compton P, Garovoy M, Kwon P, Walicke P, Dedrick R (2006) An overview of the pharmacokinetics and pharmacodynamics of efalizumab: a monoclonal antibody approved for use in psoriasis. J Clin Pharmacol 46:10–20

    Article  CAS  PubMed  Google Scholar 

  27. Rodionov N (2000) Graph digitizer version 1.9. http://download.cnet.com/Graph-Digitizer/3000-2054_4-10073591.html. Accessed 14 July 2014

  28. D’Argenio DZ, Schumitzky A (2009) ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic system analysis Software. Biomedical Simulations Resource, Los Angeles

    Google Scholar 

  29. Deli MA (2009) Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim Biophys Acta Biomembr 1788:892–910

    Article  CAS  Google Scholar 

  30. Beyer I, van Rensburg R, Strauss R, Li Z, Wang H, Persson J, Yumul R, Feng Q, Song H, Bartek J, Fender P, Lieber A (2011) Epithelial junction opener JO-1 improves monoclonal antibody therapy of cancer. Cancer Res 71:7080–7090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. McNulty M, Singh RJ, Li X, Bergstralh EJ, Kumar R (2011) Determination of serum and plasma sclerostin concentrations by enzyme-linked immunoassays. J Clin Endocrinol Metab 96:E1159–E1162

    Article  PubMed Central  PubMed  Google Scholar 

  32. Yan X, Mager DE, Krzyzanski W (2010) Selection between Michaelis–Menten and target-mediated drug disposition pharmacokinetic models. J Pharmacokinet Pharmacodyn 37:25–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Wiig H, Kaysen GA, al-Bander HA, De Carlo M, Sibley L, Renkin EM (1994) Interstitial exclusion of IgG in rat tissues estimated by continuous infusion. Am J Physiol 266:H212–H219

    CAS  PubMed  Google Scholar 

  34. Wiig H, Tenstad O (2001) Interstitial exclusion of positively and negatively charged IgG in rat skin and muscle. Am J Physiol Heart Circ Physiol 280:H1505–H1512

    CAS  PubMed  Google Scholar 

  35. Wiig H, Swartz MA (2012) Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev 92:1005–1060

    Article  CAS  PubMed  Google Scholar 

  36. Nakahara T, Norberg SM, Shalinsky DR, Hu-Lowe DD, McDonald DM (2006) Effect of inhibition of vascular endothelial growth factor signaling on distribution of extravasated antibodies in tumors. Cancer Res 66:1434–1445

    Article  CAS  PubMed  Google Scholar 

  37. Thurber GM, Schmidt MM, Wittrup KD (2008) Factors determining antibody distribution in tumors. Trends Pharmacol Sci 29:57–61

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Thurber GM, Schmidt MM, Wittrup KD (2008) Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev 60:1421–1434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Baker JH, Lindquist KE, Huxham LA, Kyle AH, Sy JT, Minchinton AI (2008) Direct visualization of heterogeneous extravascular distribution of trastuzumab in human epidermal growth factor receptor type 2 overexpressing xenografts. Clin Cancer Res 14:2171–2179

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health Grant GM57980 and the UB Center for Protein Therapeutics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Jusko.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Jusko, W.J. Incorporating target-mediated drug disposition in a minimal physiologically-based pharmacokinetic model for monoclonal antibodies. J Pharmacokinet Pharmacodyn 41, 375–387 (2014). https://doi.org/10.1007/s10928-014-9372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-014-9372-2

Keywords

Navigation