Skip to main content

Advertisement

Log in

Target-mediated pharmacokinetic and pharmacodynamic model of recombinant human erythropoietin (rHuEPO)

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

A mechanism-based pharmacokinetic–pharmacodynamic (PK/PD) model was developed for recombinant human erythropoietin (rHuEPO) to account for receptor-mediated endocytosis via erythropoietin receptor (EPOR) as a primary mechanism for nonlinear disposition of rHuEPO as well as activation of erythropoietic stimulation. Time profiles of rHuEPO concentrations following a wide range of intravenous (i.v.) doses in rats (10, 100, 450, 1,350, 4,050 IU/kg), monkeys (500, 2,000, 4,000 IU/kg), and man (10, 100, 150, 300, 500 IU/kg) were examined. The mean data of reticulocytes, red blood cells (RBC), and hemoglobin for five different doses in rats were analyzed. The PK model components included receptor binding, subsequent internalization and degradation, EPOR turnover, non-specific tissue distribution, and linear first-order elimination from plasma. The equilibrium dissociation constant (K D ) was similar between rats and monkeys (0.11 nM) and was 10-fold lower in humans (0.012 nM). The PD effects of rHuEPO were described by an indirect response model with lifespan cell loss and driven by the rHuEPO–EPOR complex. A generalized nonlinear PK model for rHuEPO taking into account EPOR binding of the drug in bone marrow was proposed and well described the PK profiles of rHuEPO following i.v. doses in rats, monkeys, and man. The present receptor-mediated PK/PD model for rHuEPO closely reflects underlying mechanisms of disposition and dynamics of rHuEPO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Koury MJ, Sawyer ST and Brandt SJ (2002). New insights into erythropoiesis. Curr Opin Hematol 9: 93–100

    Article  PubMed  Google Scholar 

  2. Walrafen P, Verdier F, Kadri Z, Chretien S, Lacombe C and Mayeux P (2005). Both proteasomes and lysosomes degrade the activated erythropoietin receptor. Blood 105: 600–608

    Article  CAS  PubMed  Google Scholar 

  3. Chapel S, Veng-Pedersen P, Hohl RJ, Schmidt RL, McGuire EM and Widness JA (2001). Changes in erythropoietin pharmacokinetics following busulfan-induced bone marrow ablation in sheep: evidence for bone marrow as a major erythropoietin elimination pathway. J Pharmacol Exp Ther 298: 820–824

    CAS  PubMed  Google Scholar 

  4. Kato M, Kamiyama H, Okazaki A, Kumaki K, Kato Y and Sugiyama Y (1997). Mechanism for the nonlinear pharmacokinetics of erythropoietin in rats. J Pharmacol Exp Ther 283: 520–527

    CAS  PubMed  Google Scholar 

  5. Jin F and Krzyzanski W (2004). Pharmacokinetic model of target-mediated disposition of thrombopoietin. AAPS PharmSci 6: 1–8

    Article  Google Scholar 

  6. Mager DE, Neuteboom B, Efthymiopoulos C, Munafo A and Jusko WJ (2003). Receptor-mediated pharmacokinetics and pharmacodynamics of interferon-{beta}1a in monkeys. J Pharmacol Exp Ther 306: 262–270

    Article  CAS  PubMed  Google Scholar 

  7. Segrave AM, Mager DE, Charman SA, Edwards GA and Porter CJH (2004). Pharmacokinetics of recombinant human leukemia inhibitory factor in sheep. J Pharmacol Exp Ther 309: 1085–1092

    Article  CAS  PubMed  Google Scholar 

  8. Stohlman F Jr and Brecher G (1959). Humoral regulation of erythropoiesis. V. Relationship of plasma erythropoietine level to bone marrow activity. Proc Soc Exp Biol Med 100: 40–3

    CAS  PubMed  Google Scholar 

  9. Ramakrishnan R, Cheung WK, Farrell F, Joffee L and Jusko WJ (2003). Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after intravenous and subcutaneous dose administration in cynomolgus monkeys. J Pharmacol Exp Ther 306: 324–331

    Article  CAS  PubMed  Google Scholar 

  10. Ramakrishnan R, Cheung WK, Wacholtz MC, Minton N and Jusko WJ (2004). Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after single and multiple doses in healthy volunteers. J Clin Pharmacol 44: 991–1002

    Article  CAS  PubMed  Google Scholar 

  11. Woo S, Krzyzanski W and Jusko WJ (2006). Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after intravenous and subcutaneous administration in rats. J Pharmacol Exp Ther 319: 1297–1306

    Article  CAS  PubMed  Google Scholar 

  12. Veng-Pedersen P, Chapel S, Al-Huniti NH, Schmidt RL, Sedars EM, Hohl RJ and Widness JA (2003). A differential pharmacokinetic analysis of the erythropoietin receptor population in newborn and adult sheep. J Pharmacol Exp Ther 306: 532–537

    Article  CAS  PubMed  Google Scholar 

  13. Mager DE and Jusko WJ (2001). General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28: 507–532

    Article  CAS  PubMed  Google Scholar 

  14. Mager DE and Krzyzanski W (2005). Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res 22: 1589–1596

    Article  CAS  PubMed  Google Scholar 

  15. Cheung WK, Goon BL, Guilfoyle MC and Wacholtz MC (1998). Pharmacokinetics and pharmacodynamics of recombinant human erythropoietin after single and multiple subcutaneous doses to healthy subjects. Clin Pharmacol Ther 64: 412–423

    Article  CAS  PubMed  Google Scholar 

  16. Fisher JW and Nakashima J (1992). The role of hypoxia in renal production of erythropoietin. Cancer 70: 928–939

    CAS  PubMed  Google Scholar 

  17. Wintrobe MM (2003). Wintrobe’s clinical hematology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  18. D’Argenio DZ, Schumitzky A (1997) ADAPT II user’s guide: pharmacokinetic/pharmacodynamic system analysis software. Biomedical Simulations Resource, Los Angeles

  19. Akahane K, Tojo A, Fukamachi H, Kitamura T, Saito T, Urabe A and Takaku F (1989). Binding of iodinated erythropoietin to rat bone marrow cells under normal and anemic conditions. Exp Hematol 17: 177–182

    CAS  PubMed  Google Scholar 

  20. Veng-Pedersen P, Chapel S, Al-Huniti NH, Schmidt RL, Sedars EM, Hohl RJ and Widness JA (2004). Pharmacokinetic tracer kinetics analysis of changes in erythropoietin receptor population in phlebotomy-induced anemia and bone marrow ablation. Biopharm Drug Dispos 25: 149–156

    Article  CAS  PubMed  Google Scholar 

  21. Ng CM, Joshi A, Dedrick RL, Garovoy MR and Bauer RJ (2005). Pharmacokinetic–pharmacodynamic-efficacy analysis of efalizumab in patients with moderate to severe psoriasis. Pharm Res 22: 1088–1100

    Article  CAS  PubMed  Google Scholar 

  22. Eppler SM, Combs DL, Henry TD, Lopez JJ, Ellis SG, Yi J-H, Annex BH, McCluskey ER and Zioncheck TF (2002). A target-mediated model to describe the pharmacokinetics and hemodynamic effects of recombinant human vascular endothelial growth factor in humans. Clin Pharmacol Ther 72: 20–32

    Article  CAS  PubMed  Google Scholar 

  23. Mager DE and Jusko WJ (2002). Receptor-mediated pharmacokinetic/pharmacodynamic model of interferon-beta 1a in humans. Pharm Res 19: 1537–1543

    Article  CAS  PubMed  Google Scholar 

  24. Flaharty KK, Caro J, Erslev A, Whalen JJ, Morris EM, Bjornsson TD and Vlasses PH (1990). Pharmacokinetics and erythropoietic response to human recombinant erythropoietin in healthy men. Clin Pharmacol Ther 47: 557–564

    Article  PubMed  Google Scholar 

  25. Kinoshita H, Ohishi N, Kato M, Tokura S and Okazaki A (1992). Pharmacokinetics and distribution of recombinant erythropoietin in rats. Arzneimittelforschung 42: 174–178

    CAS  PubMed  Google Scholar 

  26. Lappin TR, Maxwell AP and Johnston PG (2002). EPO’s alter ego: erythropoietin has multiple actions. Stem Cells 20: 485–492

    Article  CAS  PubMed  Google Scholar 

  27. Jelkmann W and Wagner K (2004). Beneficial and ominous aspects of the pleiotropic action of erythropoietin. Ann Hematol 83: 673–686

    Article  CAS  PubMed  Google Scholar 

  28. Masuda S, Nagao M, Takahata K, Konishi Y, Gallyas F Jr, Tabira T and Sasaki R (1993). Functional erythropoietin receptor of the cells with neural characteristics. Comparison with receptor properties of erythroid cells. J Biol Chem 268: 11208–11216

    CAS  PubMed  Google Scholar 

  29. Egrie JC and Browne JK (2001). Development and characterization of novel erythropoiesis stimulating protein (NESP). Nephrol Dial Transplant 16(Suppl 3): 3–13

    PubMed  Google Scholar 

  30. Macdougall IC (2005). CERA (Continuous Erythropoietin Receptor Activator): a new erythropoiesis-stimulating agent for the treatment of anemia. Curr Hematol Rep 4: 436–440

    CAS  PubMed  Google Scholar 

  31. Wen D, Boissel JP, Tracy TE, Gruninger RH, Mulcahy LS, Czelusniak J, Goodman M and Bunn HF (1993). Erythropoietin structure-function relationships: high degree of sequence homology among mammals. Blood 82: 1507–1516

    CAS  PubMed  Google Scholar 

  32. Jelkmann W (1992). Erythropoietin: structure, control of production and function. Physiol Rev 72: 449–489

    CAS  PubMed  Google Scholar 

  33. Hoshino S, Teramura M, Takahashi M, Motoji T, Oshimi K, Ueda M and Mizoguchi H (1989). Expression and characterization of erythropoietin receptors on normal human bone marrow cells. Int J Cell Cloning 7: 156–167

    Article  CAS  PubMed  Google Scholar 

  34. Veng-Pedersen P, Widness JA, Wang J and Schmidt RL (1997). A tracer interaction method for nonlinear pharmacokinetics analysis: application to evaluation of nonlinear elimination. J Pharmacokinet Biopharm 25: 569–593

    Article  CAS  PubMed  Google Scholar 

  35. Gross AW and Lodish HF (2006). Cellular trafficking and degradation of erythropoietin and novel erythropoiesis stimulating protein (NESP). J Biol Chem 281: 2024–2032

    Article  CAS  PubMed  Google Scholar 

  36. Dahlen DD, Broudy VC and Drachman JG (2003). Internalization of the thrombopoietin receptor is regulated by two cytoplasmic motifs. Blood 102: 102–108

    Article  CAS  PubMed  Google Scholar 

  37. Fandrey J (2004). Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am J Physiol Regul Integr Comp Physiol 286: R977–R988

    CAS  PubMed  Google Scholar 

  38. Wide L, Bengtsson C and Birgegard G (1989). Circadian rhythm of erythropoietin in human serum. Br J Haematol 72: 85–90

    CAS  PubMed  Google Scholar 

  39. Klingmuller U (1997). The role of tyrosine phosphorylation in proliferation and maturation of erythroid progenitor cells - signals emanating from the erythropoietin receptor. Eur J Biochem 249: 637–647

    Article  CAS  PubMed  Google Scholar 

  40. Klingmuller U, Lorenz U, Cantley LC, Neel BG and Lodish HF (1995). Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80: 729–738

    Article  CAS  PubMed  Google Scholar 

  41. Supino-Rosin L, Yoshimura A, Altaratz H and Neumann D (1999). A cytosolic domain of the erythropoietin receptor contributes to endoplasmic reticulum-associated degradation. Eur J Biochem 263: 410–419

    Article  CAS  PubMed  Google Scholar 

  42. Birkhill FR, Maloney MA and Levenson SM (1951). Effect of transfusion polycythemia upon bone marrow activity and erythrocyte survival in man. Blood 6: 1021–1033

    CAS  PubMed  Google Scholar 

  43. Al-Huniti NH, Widness JA, Schmidt RL and Veng-Pedersen P (2004). Pharmacokinetic/pharmacodynamic analysis of paradoxal regulation of erythropoietin production in acute anemia. J Pharmacol Exp Ther 310: 202–208

    Article  CAS  PubMed  Google Scholar 

  44. Krzyzanski W, Jusko WJ, Wacholtz MC, Minton N and Cheung WK (2005). Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after multiple subcutaneous doses in healthy subjects. Eur J Pharm Sci 26: 295–306

    Article  CAS  PubMed  Google Scholar 

  45. Trial J and Rice L (2004). Erythropoietin withdrawal leads to the destruction of young red cells at the endothelial-macrophage interface. Curr Pharm Des 10: 183–190

    Article  CAS  PubMed  Google Scholar 

  46. Woo S and Jusko WJ (2007). Interspecies comparisons of pharmacokinetics and pharmacodynamics of recombinant human erythropoietin. Drug Metab Dispos 35: 1672–1678

    Article  CAS  PubMed  Google Scholar 

  47. Mager DE, Neuteboom B and Jusko WJ (2005). Pharmacokinetics and pharmacodynamics of PEGylated IFN-beta 1a following subcutaneous administration in monkeys. Pharm Res 22: 58–61

    Article  CAS  PubMed  Google Scholar 

  48. Widness JA, Veng-Pedersen P, Peters C, Pereira LM, Schmidt RL and Lowe LS (1996). Erythropoietin pharmacokinetics in premature infants: developmental, nonlinearity, and treatment effects. J Appl Physiol 80: 140–148

    CAS  PubMed  Google Scholar 

  49. Chapel SH, Veng-Pedersen P, Schmidt RL and Widness JA (2001). Receptor-based model accounts for phlebotomy-induced changes in erythropoietin pharmacokinetics. Exp Hematol 29: 425–431

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Jusko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, S., Krzyzanski, W. & Jusko, W.J. Target-mediated pharmacokinetic and pharmacodynamic model of recombinant human erythropoietin (rHuEPO). J Pharmacokinet Pharmacodyn 34, 849–868 (2007). https://doi.org/10.1007/s10928-007-9074-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-007-9074-0

Keywords

Navigation