Skip to main content
Log in

Modeling receptor/gene-mediated effects of corticosteroids on hepatic tyrosine aminotransferase dynamics in rats: dual regulation by endogenous and exogenous corticosteroids

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Receptor/gene-mediated effects of corticosteroids on hepatic tyrosine aminotransferase (TAT) were evaluated in normal rats. A group of normal male Wistar rats were injected with 50 mg/kg methylprednisolone (MPL) intramuscularly at the nadir of their plasma corticosterone (CST) rhythm (early light cycle) and sacrificed at various time points up to 96 h post-treatment. Blood and livers were collected to measure plasma MPL, CST, hepatic glucocorticoid receptor (GR) mRNA, cytosolic GR density, TAT mRNA, and TAT activity. The pharmacokinetics of MPL showed bi-exponential disposition with two first-order absorption components from the injection site and bioavailability was 21%. Plasma CST was reduced after MPL dosing, but resumed its daily circadian pattern within 36 h. Cytosolic receptor density was significantly suppressed (90%) and returned to baseline by 72 h resuming its biphasic pattern. Hepatic GR mRNA follows a circadian pattern which was disrupted by MPL and did not return during the study. MPL caused significant down-regulation (50%) in GR mRNA which was followed by a delayed rebound phase (60–70 h). Hepatic TAT mRNA and activity showed up-regulation as a consequence of MPL, and returned to their circadian baseline within 72 and 24 h of treatment. A mechanistic receptor/gene-mediated pharmacokinetic/pharmacodynamic model was able to satisfactorily describe the complex interplay of exogenous and endogenous corticosteroid effects on hepatic GR mRNA, cytosolic free GR, TAT mRNA, and TAT activity in normal rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Czock D, Keller F, Rasche FM and Haussler U (2005). Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet 44: 61–98

    Article  PubMed  CAS  Google Scholar 

  2. Bagdade JD, Bierman EL and Porte D Jr (1970). Steroid-induced lipemia. A complication of high-dosage corticosteroid therapy. Arch Int Med 125: 129–134

    Article  CAS  Google Scholar 

  3. Schacke H, Docke WD and Asadullah K (2002). Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 96: 23–43

    Article  PubMed  CAS  Google Scholar 

  4. Staels B (2006). When the clock stops ticking, metabolic syndrome explodes. Nat Med 12: 54–55

    Article  PubMed  CAS  Google Scholar 

  5. Wilcke JR and Davis LE (1982). Review of glucocorticoid pharmacology. Vet Clin North America – Small Anim Pract 12: 3–17

    CAS  Google Scholar 

  6. Haughey DB and Jusko WJ (1992). Receptor-mediated methylprednisolone pharmacodynamics in rats: steroid-induced receptor down-regulation. J Pharmacokinet Biopharm 20: 333–355

    Article  PubMed  CAS  Google Scholar 

  7. Mager DE, Pyszczynski NA and Jusko WJ (2003). Integrated QSPR-pharmacodynamic model of genomic effects of several corticosteroids. J Pharm Sci 92: 881–889

    Article  PubMed  CAS  Google Scholar 

  8. Ramakrishnan R, DuBois DC, Almon RR, Pyszczynski NA and Jusko WJ (2002). Pharmacodynamics and pharmacogenomics of methylprednisolone during 7-day infusions in rats. J Pharmacol Exp Ther 300: 245–256

    Article  PubMed  CAS  Google Scholar 

  9. Ramakrishnan R, DuBois DC, Almon RR, Pyszczynski NA and Jusko WJ (2002). Fifth-generation model for corticosteroid pharmacodynamics: application to steady-state receptor down-regulation and enzyme induction patterns during seven-day continuous infusion of methylprednisolone in rats. J Pharmacokinet Pharmacodyn 29: 1–24

    Article  PubMed  CAS  Google Scholar 

  10. Sun YN, DuBois DC, Almon RR and Jusko WJ (1998). Fourth-generation model for corticosteroid pharmacodynamics: a model for methylprednisolone effects on receptor/gene-mediated glucocorticoid receptor down-regulation and tyrosine aminotransferase induction in rat liver. J Pharmacokinet Biopharm 26: 289–317

    Article  PubMed  CAS  Google Scholar 

  11. Sun YN, DuBois DC, Almon RR, Pyszczynski NA and Jusko WJ (1998). Dose-dependence and repeated-dose studies for receptor/gene-mediated pharmacodynamics of methylprednisolone on glucocorticoid receptor down-regulation and tyrosine aminotransferase induction in rat liver. J Pharmacokinet Biopharm 26: 619–648

    Article  PubMed  CAS  Google Scholar 

  12. Wolfe BB, Harden TK and Molinoff PB (1976). Beta-adrenergic receptors in rat liver: effects of adrenalectomy. Proc Natl Acad Sci USA 73: 1343–1347

    Article  PubMed  CAS  Google Scholar 

  13. Meijs-Roelofs HM and Kramer P (1977). Effects of adrenalectomy on the release of follicle-stimulating hormone and the onset of puberty in female rats. J Endocrinol 75: 419–426

    Article  PubMed  CAS  Google Scholar 

  14. Savontaus E, Conwell IM and Wardlaw SL (2002). Effects of adrenalectomy on AGRP, POMC, NPY and CART gene expression in the basal hypothalamus of fed and fasted rats. Brain Res 958: 130–138

    Article  PubMed  CAS  Google Scholar 

  15. Exton JH (1979). Regulation of gluconeogenesis by glucocorticoids. Monogr Endocrinol 12: 535–546

    PubMed  CAS  Google Scholar 

  16. Haughey DB and Jusko WJ (1988). Analysis of methylprednisolone, methylprednisone and corticosterone for assessment of methylprednisolone disposition in the rat. J Chromatogr 430: 241–248

    Article  PubMed  CAS  Google Scholar 

  17. Boudinot FD, D’Ambrosio R and Jusko WJ (1986). Receptor-mediated pharmacodynamics of prednisolone in the rat. J Pharmacokinet Biopharm 14: 469–493

    Article  PubMed  CAS  Google Scholar 

  18. Lowry OH, Rosebrough NJ, Farr AL and Randall RJ (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275

    PubMed  CAS  Google Scholar 

  19. DuBois DC, Almon RR and Jusko WJ (1993). Molar quantification of specific messenger ribonucleic acid expression in northern hybridization using cRNA standards. Anal Biochem 210: 140–144

    Article  PubMed  CAS  Google Scholar 

  20. DuBois DC, Xu ZX, McKay L, Almon RR, Pyszcznski N and Jusko WJ (1995). Differential dynamics of receptor down-regulation and tyrosine aminotransferase induction following glucocorticoid treatment. J Steroid Biochem Mol Biol 54: 237–243

    Article  PubMed  CAS  Google Scholar 

  21. Diamondstone TI (1966). Assay of tyrosine aminotransferase by conversion of p-hydroxyphenylpyruvate to p-hydroxybenzaldehyde. Anal Biochem 16: 395–401

    Article  CAS  Google Scholar 

  22. Hazra A, Jusko WJ, Almon RR, DuBois DC (2005) Pharmacodynamics of circadian rhythm of corticosterone effects on tyrosine aminotransferase in normal rats. AAPS J 6:Abstract T3355

  23. Yao Z, Dubois DC, Almon RR and Jusko WJ (2006). Modeling circadian chythms of glucocorticoid receptor and glutamine synthetase expression in rat skeletal muscle. Pharm Res 23: 670–679

    Article  PubMed  CAS  Google Scholar 

  24. Hazra A, Pyszczynski NA, Dubois DC, Almon RR and Jusko WJ (2007). Pharmacokinetics of methylprednisolone after intravenous and intramuscular administration in rats. Biopharm Drug Disp 28: 263–277

    Article  CAS  Google Scholar 

  25. Vamvakopoulos NO (1993). Tissue-specific expression of heat shock proteins 70 and 90: potential implication for differential sensitivity of tissues to glucocorticoids. Mol Cell Endocrinol 98: 49–54

    Article  PubMed  CAS  Google Scholar 

  26. Czar MJ, Owens-Grillo JK, Dittmar KD, Hutchison KA, Zacharek AM, Leach KL, Pratt WB and Deibel MR (1994). Characterization of the protein–protein interactions determining the heat shock protein (hsp90.hsp70.hsp56) heterocomplex. J Biol Chem 269: 11155–11161

    PubMed  CAS  Google Scholar 

  27. Hutchison KA, Dittmar KD, Czar MJ and Pratt WB (1994). Proof that hsp70 is required for assembly of the glucocorticoid receptor into a heterocomplex with hsp90. J Biol Chem 269: 5043–5049

    PubMed  CAS  Google Scholar 

  28. Orti E, Hu LM and Munck A (1993). Kinetics of glucocorticoid receptor phosphorylation in intact cells. Evidence for hormone-induced hyperphosphorylation after activation and recycling of hyperphosphorylated receptors. J Biol Chem 268: 7779–7784

    PubMed  CAS  Google Scholar 

  29. Schaaf MJ and Cidlowski JA (2002). Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol 83: 37–48

    Article  PubMed  CAS  Google Scholar 

  30. Burnstein KL, Jewell CM and Cidlowski JA (1990). Human glucocorticoid receptor cDNA contains sequences sufficient for receptor down-regulation. J Biol Chem 265: 7284–7291

    PubMed  CAS  Google Scholar 

  31. Oakley RH and Cidlowski JA (1993). Homologous down regulation of the glucocorticoid receptor: the molecular machinery. Crit Rev Eukar Gene Express 3: 63–88

    CAS  Google Scholar 

  32. Beato M, Chalepakis G, Schauer M and Slater EP (1989). DNA regulatory elements for steroid hormones. J Steroid Biochem 32: 737–747

    Article  PubMed  CAS  Google Scholar 

  33. Kong AN, Jungbluth GL, Pasko MT, Beam TR and Jusko WJ (1990). Pharmacokinetics of methylprednisolone sodium succinate and methylprednisolone in patients undergoing cardiopulmonary bypass. Pharmacotherapy 10: 29–34

    PubMed  CAS  Google Scholar 

  34. Krzyzanski W (2000) FOURPHARM user’s guide: a computer program applying Fourier analysis to biorhythmic data. Buffalo, NY

  35. Cahill AL and Ehret CF (1981). Circadian variations in the activity of tyrosine hydroxylase, tyrosine aminotransferase and tryptophan hydroxylase: relationship to catecholamine metabolism. J Neurochem 37: 1109–1115

    Article  PubMed  CAS  Google Scholar 

  36. Wolff ME, Baxter JD, Kollman PA, Lee DL, Kuntz ID, Bloom E, Matulich DT and Morris J (1978). Nature of steroid–glucocorticoid receptor interactions: thermodynamic analysis of the binding reaction. Biochemistry 17: 3201–3208

    Article  PubMed  CAS  Google Scholar 

  37. Earp JC, Krzyzanski W, Chakraborty A, Zamacona MK and Jusko WJ (2004). Assessment of drug interactions relevant to pharmacodynamic indirect response models. J Pharmacokinet Pharmacodyn 31: 345–380

    Article  PubMed  CAS  Google Scholar 

  38. Hazra A (2007) Pharmacokinetic/pharmacodynamic modeling of selected receptor/gene mediated effects of corticosteroids. Ph.D. Thesis, State University of New York at Buffalo, Buffalo, NY

  39. Antal EJ, Gillespie WR, Albert KS and Wright CE (1983). Influence of route of administration on the pharmacokinetics of methylprednisolone. J Pharmacokinet Biopharm 11: 561–576

    Article  PubMed  CAS  Google Scholar 

  40. Daley-Yates PT, Gregory AJ and Brooks CD (1997). Pharmacokinetic and pharmacodynamic assessment of bioavailability for two prodrugs of methylprednisolone. Br J Clin Pharmacol 43: 593–601

    Article  PubMed  CAS  Google Scholar 

  41. Samtani MN and Jusko WJ (2005). Comparison of dexamethasone pharmacokinetics in female rats after intravenous and intramuscular administration. Biopharm Drug Dispos 26: 85–91

    Article  PubMed  CAS  Google Scholar 

  42. Chakraborty A, Krzyzanski W and Jusko WJ (1999). Mathematical modeling of circadian cortisol concentrations using indirect response models: comparison of several methods. J Pharmacokinet Biopharm 27: 23–43

    Article  PubMed  CAS  Google Scholar 

  43. Samtani MN, Pyszczynski NA, Dubois DC, Almon RR and Jusko WJ (2006). Modeling glucocorticoid-mediated fetal lung maturation: I. Temporal patterns of corticosteroids in rat pregnancy. J Pharmacol Exp Ther 317: 117–126

    Article  PubMed  CAS  Google Scholar 

  44. Hache RJ, Tse R, Reich T, Savory JG and Lefebvre YA (1999). Nucleocytoplasmic trafficking of steroid-free glucocorticoid receptor. J Biol Chem 274: 1432–1439

    Article  PubMed  CAS  Google Scholar 

  45. Htun H, Barsony J, Renyi I, Gould DL and Hager GL (1996). Visualization of glucocorticoid receptor translocation and intranuclear organization in living cells with a green fluorescent protein chimera. Proc Natl Acad Sci USA 93: 4845–4850

    Article  PubMed  CAS  Google Scholar 

  46. Hazra A, Dubois DC, Almon RR, Jusko WJ (2007) Assessing the dynamics of nuclear glucocorticoid-receptor complex: adding flexibility to gene expression modeling. J Pharmacokinet Pharmacodyn Epub (ahead of print)

  47. Rix M, Birkebaek NH, Rosthoj S and Clausen N (2005). Clinical impact of corticosteroid-induced adrenal suppression during treatment for acute lymphoblastic leukemia in children: a prospective observational study using the low-dose adrenocorticotropin test. J Pediatrics 147: 645–650

    Article  CAS  Google Scholar 

  48. Yamada K and Satoh T (1985). In vivo effects of glucocorticoids on serum corticosterone levels in rats. Res Commun Mol Pathol Pharmacol 47: 441–444

    CAS  Google Scholar 

  49. Pepin MC, Beaulieu S and Barden N (1990). Differential regulation by dexamethasone of glucocorticoid receptor messenger RNA concentrations in neuronal cultures derived from fetal rat hypothalamus and cerebral cortex. Cell Mol Neurobiol 10: 227–235

    Article  PubMed  CAS  Google Scholar 

  50. Vedeckis WV, Ali M and Allen HR (1989). Regulation of glucocorticoid receptor protein and mRNA levels. Cancer Res 49: 2295s–2302s

    PubMed  CAS  Google Scholar 

  51. McIntyre WR and Samuels HH (1985). Triamcinolone acetonide regulates glucocorticoid-receptor levels by decreasing the half-life of the activated nuclear-receptor form. J Biol Chem 260: 418–427

    PubMed  CAS  Google Scholar 

  52. Gaddum JH (1937). The quantitative effect of antagonistic drugs. J Physiol (Lond) 89: 7–9

    CAS  Google Scholar 

  53. Granner DK and Hargrove JL (1983). Regulation of the synthesis of tyrosine aminotransferase: the relationship to mRNATAT. Mol Cell Biochem 53–54: 113–128

    PubMed  Google Scholar 

  54. Schmid E, Schmid W, Jantzen M, Mayer D, Jastorff B and Schutz G (1987). Transcription activation of the tyrosine aminotransferase gene by glucocorticoids and cAMP in primary hepatocytes. Eur J Biochem 165: 499–506

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Jusko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazra, A., Pyszczynski, N., DuBois, D.C. et al. Modeling receptor/gene-mediated effects of corticosteroids on hepatic tyrosine aminotransferase dynamics in rats: dual regulation by endogenous and exogenous corticosteroids. J Pharmacokinet Pharmacodyn 34, 643–667 (2007). https://doi.org/10.1007/s10928-007-9063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-007-9063-3

Keywords

Navigation