Skip to main content
Log in

A Pharmacodynamic Turnover Model Capturing Asymmetric Circadian Baselines of Body Temperature, Heart Rate and Blood Pressure in Rats: Challenges in Terms of Tolerance and Animal-handling Effects

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

This study presents development and behaviour of a feedback turnover model that mimics asymmetric circadian oscillations of body temperature, blood pressure and heart rate in rats.The study also includes an application to drug-induced hypothermia, tolerance and handling effects. Data were collected inn normotensive Sprague-Dawley rats, housed at 25 °C with a 12:12 hr light dark cycle (light on at 06:00 am) and with free access of food and water. The model consisted of two intertwined parallel compartments which captured a free-running rhythm with a period close to but not exactly 24 hrs. The free-running rhythm was synchronised to exactly 24 hrs by the environmental timekeeper (12:12 hr light on/off cycle) in experimental settings. The baseline model was fitted to a standardised 24-hr period derived from mean data of six animals over a period of nine consecutive days. The first-order rate constants related to the turnover of the baseline temperature, α and β, were 0.026 min−1 (±5%) and 0.0037 min−1 (±3%). The α and β parameters are approximately 2/transition time between day and night and 2/night time, respectively. The day:night timekeeper g(t), reference point Tref and amplitude were 0.053(±2%),37.3(±0.02%) and 3.3% (±2%), respectively. Simulations with the baseline model revealed stable oscillations (free-running rhythm) in the absence of the timekeeper. This temperature–time profile was then symmetric and had a smaller amplitude, with a slightly shorter period and less pronounced temperature shift as compared to the profile in the presence of an external Timekeeper. Fitting the model to 96 hr mean profiles of blood pressure and heart rate from 10 control animals demonstrated the usefulness of the model.Simulations of the integrated temperature model succeeded in mimicking other modes of administration such as oral dosing

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Moore-Ede F. Sulzman C. Fuller (1982) The Clocks that Time Us Harvard University Press Cambridge, Massachusetts, and London, England

    Google Scholar 

  2. R. Foster L. Kreitzman (2004) Rythms of Life: The Biological Clocks that Control the Daily Lives of Every Living Thing Profile Books Ltd London Great Britain

    Google Scholar 

  3. B. Lemmer (1997) ArticleTitleChronopharmacokinetics: Implications for drug treatment J. Pharm. Pharmacol 51 887–890

    Google Scholar 

  4. A. Chakraborty W. Krzyzanski W.J. Jusko (1999) ArticleTitleMathematical modeling of circadian cortisol concentrations using indirect response models: Comparison of several methods J. Pharmacokinet. Biopharm 27 23–43 Occurrence Handle10.1023/A:1020678628317 Occurrence Handle10533696 Occurrence Handle1:CAS:528:DyaK1MXlvVOmtLc%3D

    Article  PubMed  CAS  Google Scholar 

  5. D. Kaplan L. Glass (1995) Understanding Nonlinear Dynamics Springer Verlag New York, Berlin, Heidelberg

    Google Scholar 

  6. L.L. Lobo B. Claustrat G. Debilly L. Paut-Pagano M. Jouvet J.L. Valatx (1999) ArticleTitleHypoprolactinemic rats under conditions of constant darkness or constant light Effects on the sleep-wake cycle, cerebral temperature and sulfatoxymelatonin levels. Brain Res. 835 282–289 Occurrence Handle1:CAS:528:DyaK1MXktlyiurY%3D

    CAS  Google Scholar 

  7. A. Boeckman L.B. Sheiner S.L. Beal (1992) NONMEM Users guide, NONMEM project group University of California San Francisco, CA

    Google Scholar 

  8. WinNonlin, www.Pharsight.com.

  9. R. Macey and G. Oster. Berkeley Madonna, Modeling and analysis of dynamical systems. www.berkeleymadonna.com

  10. R. Refinetti M. Menaker (1992) ArticleTitleThe circadian rhythm of body temperature Physiol Behav 51 613–637 Occurrence Handle10.1016/0031-9384(92)90188-8 Occurrence Handle1523238 Occurrence Handle1:STN:280:By2A1MnnsVM%3D

    Article  PubMed  CAS  Google Scholar 

  11. E. Briese (1985) ArticleTitleRats prefer ambient temperatures out of phase with their body temperature circadian rhythm Brain Res. 345 389–393 Occurrence Handle10.1016/0006-8993(85)91023-6 Occurrence Handle4041898 Occurrence Handle1:STN:280:BimD3c7ntFM%3D

    Article  PubMed  CAS  Google Scholar 

  12. E. Briese (1998) ArticleTitleNormal body temperature of rats: The set point controversy Neurosci. Biobehav. Rev. 22 427–436 Occurrence Handle10.1016/S0149-7634(97)00051-1 Occurrence Handle9579330 Occurrence Handle1:STN:280:DyaK1c3ktVCqsQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  13. J.A. Shoemaker R. Refinetti (1996) Day-night difference in the preferred ambient temperature of human subjects. Physiol Behav. 59 1001–1003 Occurrence Handle1:CAS:528:DyaK28XitFKnsLY%3D

    CAS  Google Scholar 

  14. J. Bligh (1979) ArticleTitleThe central neurology of mammalian thermoregulation Neuroscience 4 1213–1216 Occurrence Handle10.1016/0306-4522(79)90153-2 Occurrence Handle40160 Occurrence Handle1:CAS:528:DyaE1MXlvFSitLg%3D

    Article  PubMed  CAS  Google Scholar 

  15. E. Zeisberger (1998) ArticleTitleBiogenic amines and thermoregulation changes Prog. Brain Res 115 159–176 Occurrence Handle9632935 Occurrence Handle1:CAS:528:DyaK1cXktVWksrY%3D

    PubMed  CAS  Google Scholar 

  16. K.P. Zuideveld H.J. Maas N. Treijtel J. Hulshof P.H. Graff Particlevan der L.A. Peletier M. Danhof (2001) ArticleTitleA set-point model with oscillatory behaviour predicts the time course of 8-OH-DPAT-induced hypothermia Am. J. Physiol Regul. Integr. Comp Physiol 281 R2059–R2071 Occurrence Handle11705793 Occurrence Handle1:CAS:528:DC%2BD3MXptlKntbw%3D

    PubMed  CAS  Google Scholar 

  17. E. Ackerman J.W. Rosevear W.F. McGuckin (1964) ArticleTitleA mathematical model of the glucose-tolerance test Phys. Med. Biol 9 203–213 Occurrence Handle10.1088/0031-9155/9/2/307

    Article  Google Scholar 

  18. P. Depres-Brummer F. Levi G. Metzger Y. Touitou (1995) ArticleTitleLight-induced suppression of the rat circadian system Am. J. Physiol 268 R1111–R1116 Occurrence Handle7771569 Occurrence Handle1:CAS:528:DyaK2MXlvVWqurw%3D

    PubMed  CAS  Google Scholar 

  19. J.C. Leloup A. Goldbeter (2000) Modeling the molecular regulatory mechanism of circadian rhythms in Drosophila. Bioessays 22 84–93 Occurrence Handle1:CAS:528:DC%2BD3MXmslGrsLk%3D

    CAS  Google Scholar 

  20. P. Smolen D.A. Baxter J.H. Byrne (2001) ArticleTitleModeling circadian oscillations with interlocking positive and negative feedback loops J. Neurosci 21 6644–6656 Occurrence Handle11517254 Occurrence Handle1:CAS:528:DC%2BD3MXmt1Wju7s%3D

    PubMed  CAS  Google Scholar 

  21. M.W. Young S.A. Kay (2001) ArticleTitleTime zones: a comparative genetics of circadian clocks Nat. Rev. Genet 2 702–715 Occurrence Handle10.1038/35088576 Occurrence Handle11533719 Occurrence Handle1:CAS:528:DC%2BD3MXmvV2hurc%3D

    Article  PubMed  CAS  Google Scholar 

  22. L.P. Shearman S. Sriram D.R. Weaver E.S. Maywood I. Chaves B. Zheng K. Kume C.C. Lee G.T. Horst Particlevan der M.H. Hastings S.M. Reppert (2000) ArticleTitleInteracting molecular loops in the mammalian circadian clock Science 288 1013–1019 Occurrence Handle10.1126/science.288.5468.1013 Occurrence Handle10807566 Occurrence Handle1:CAS:528:DC%2BD3cXjtlygsLk%3D

    Article  PubMed  CAS  Google Scholar 

  23. S.M. Reppert D.R. Weaver (2002) ArticleTitleCoordination of circadian timing in mammals Nature 418 935–941 Occurrence Handle10.1038/nature00965 Occurrence Handle12198538 Occurrence Handle1:CAS:528:DC%2BD38XmsFWksb0%3D

    Article  PubMed  CAS  Google Scholar 

  24. E.B. Ekblad V. Licko (1984) ArticleTitleInvariant relation between total acid secretion and secretagogue exposure: Secretory dynamics in bullfrog Am. J. Physiol. Gastrointest. Liver. Physiol 246 G325–G330 Occurrence Handle1:CAS:528:DyaL2cXktVWns7s%3D

    CAS  Google Scholar 

  25. V. Licko E.B. Ekblad (1992) ArticleTitleDynamics of a metabolic system: what single-action agents reveal about acid secretion Am. J. Physiol. Gastrointest. Liver Physiol 262 G581–G592 Occurrence Handle1:CAS:528:DyaK38XisFamsrY%3D

    CAS  Google Scholar 

  26. J.A. Bauer H.L. Fung (1994) ArticleTitlePharmacodynamic models of nitroglycerin-induced hemodynamic tolerance in experimental heart failure Pharm. Res 11 816–823 Occurrence Handle10.1023/A:1018917522072 Occurrence Handle7937519 Occurrence Handle1:CAS:528:DyaK2cXksV2rsbg%3D

    Article  PubMed  CAS  Google Scholar 

  27. J. Gabrielsson D. Weiner (2000) Pharmacokinetic and Pharmacodynamic Data Analysis: Concepts and Applications EditionNumber3 Swedish Pharmaceutical Press Stockholm, Sweden

    Google Scholar 

  28. E.A. Coddington N. Levinson (1955) Theory of Ordinary Differential Equations McGraw-Hill New York

    Google Scholar 

  29. S.A.G. Visser S. Pozarek S. Martinsson T. Forsberg S.B. Ross J. Gabrielsson (2005) ArticleTitleRapid and longlasting tolerance to clomethiazole-induced hypothermia in the rat Eur. J. Pharmacol 512 139–151 Occurrence Handle10.1016/j.ejphar.2005.02.036 Occurrence Handle15840398 Occurrence Handle1:CAS:528:DC%2BD2MXjsVGksLw%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Gabrielsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sällström, B., Visser, S.A.G., Forsberg, T. et al. A Pharmacodynamic Turnover Model Capturing Asymmetric Circadian Baselines of Body Temperature, Heart Rate and Blood Pressure in Rats: Challenges in Terms of Tolerance and Animal-handling Effects. J Pharmacokinet Pharmacodyn 32, 835–859 (2005). https://doi.org/10.1007/s10928-005-0087-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-005-0087-2

Keywords

Navigation