Skip to main content
Log in

Mitochondrial dysfunction and effect of antiglycolytic bromopyruvic acid in GL15 glioblastoma cells

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Most cancer cells, including GL15 glioblastoma cells, rely on glycolysis for energy supply. The effect of antiglycolytic bromopyruvate on respiratory parameters and viability of GL15 cells was investigated. Bromopyruvate caused Δψm and MTT collapse, ATP decrease, and cell viability loss without involving apoptotic or necrotic pathways. The autophagy marker LC3-II was increased. Δψm decrease was accompanied by reactive oxygen species (ROS) increase and cytochrome c (cyt c) disappearance, suggesting a link between free radical generation and intramitochondrial cyt c degradation. Indeed, the free radical inducer menadione caused a decrease in cyt c that was reversed by N-acetylcysteine. Cyt c is tightly bound to the inner mitochondrial membrane in GL15 cells, which may confer protein peroxidase activity, resulting in auto-oxidation and protein targeting to degradation in the presence of ROS. This process is directed towards impairment of the apoptotic cyt c cascade, although cells are committed to die.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Babusikova E, Hatok J, Dobrota D, Kaplan P (2007) Neurochem Res 32:1351–1356

    Article  CAS  Google Scholar 

  • Beckner ME, Stracke ML, Liotta LA, Schiffmann E (1990) J Natl Cancer Inst 82:1836–1840

    Article  CAS  Google Scholar 

  • Beckner ME, Gobbel GT, Abounader R, Burovic F, Agostino NR, Laterra J, Pollack IF (2005) Lab Invest 85:1457–1470

    Article  CAS  Google Scholar 

  • Bernard-Hèlary K, Ardourel M, Magistretti P, Hévor T, Cloix JF (2002) Glia 37:379–382

    Article  Google Scholar 

  • Bota DA, Davies KJA (2001) Mitochondrion 1:33–49

    Article  CAS  Google Scholar 

  • Buratta M, Castigli E, Sciaccaluga M, Pellegrino RM, Spinozzi F, Roberti R, Corazzi L (2008) J Neurochem 105:1019–1031

    Article  CAS  Google Scholar 

  • Castigli E, Arcuri C, Giovagnoli L, Luciani R, Giovagnoli L, Secca T, Gianfranceschi GL, Bocchini V (2000) Am J Physiol Cell Physiol 279:C2043–C2049

    CAS  Google Scholar 

  • Castigli E, Sciaccaluga M, Schiavoni G, Brozzi F, Fabiani R, Gorello P, Gianfranceschi GL (2006) Oncol Rep 15:463–470

    CAS  Google Scholar 

  • Dringen R, Gebhardt R, Hamprecht B (1993) Brain Res 623:208–214

    Article  CAS  Google Scholar 

  • Ganapathy-Kanniappan S, Vali M, Kunjithapatham R, Buijs M, Syed LH, Rao PP, Ota S, Kwak BK, Loffroy R, Geschwind JF (2010) Curr Pharm Biotechnol 11:510–517

    Article  CAS  Google Scholar 

  • Geschwind JF, Ko YH, Torbenson MS, Magee C, Pedersen PL (2002) Cancer Res 62:3909–3913

    CAS  Google Scholar 

  • Geschwind JF, Georgiades CS, Ko YH, Pedersen PL (2004) Expert Rev Anticancer Ther 4:449–457

    Article  CAS  Google Scholar 

  • Gogvadze V, Zhivotovsky B (2007) J Bioenerg Biomembr 39:23–30

    Article  CAS  Google Scholar 

  • Groves K, Wilson AJ, Hamilton AD (2004) J Am Chem Soc 126:12833–12842

    Article  CAS  Google Scholar 

  • Holland EC (2001) Nat Rev Genet 2:120–129

    Article  CAS  Google Scholar 

  • Huang Z, Jiang J, Tyurin VA, Zhao Q, Mnuskin A, Ren J, Belikova NA, Feng W, Kurnikov IV, Kagan VE (2008) Free Radic Biol Med 44:1935–1944

    Article  CAS  Google Scholar 

  • Ito H, Aoki H, Kühnel F, Kondo Y, Kubicka S, Wirth T, Iwado E, Iwamaru A, Fujiwara K, Hess KR, Lang FF, Sawaya R, Kondo S (2006) J Natl Cancer Inst 98:625–636

    Article  CAS  Google Scholar 

  • Jiang H, Gomez-Manzano C, Aoki H, Alonso MM, Kondo S, McCormick F, Xu J, Kondo Y, Bekele BN, Colman H, Lang FF, Fueyo J (2007) J Natl Cancer Inst 99:1410–1414

    Article  CAS  Google Scholar 

  • Joy AM, Beaudry CE, Tran NL, Ponce FA, Holz DR, Demuth T, Berens ME (2003) J Cell Sci 116:4409–4417

    Article  CAS  Google Scholar 

  • Kagan VE, Borisenko GG, Tyurina YY, Tyurin VA, Jiang J, Potapovich AI, Kini V, Amoscato AA, Fujii Y (2004) Free Radic Biol Med 37:1963–1985

    Article  CAS  Google Scholar 

  • Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG (2005) Nat Chem Biol 1:223–232

    Article  CAS  Google Scholar 

  • Kim JS, Ahn KJ, Kim JA, Kim HM, Lee JD, Lee JM, Kim SJ, Park JH (2008) J Bioenerg Biomembr 40:607–618

    Article  CAS  Google Scholar 

  • Ko YH, Pedersen PL, Geschwind JF (2001) Cancer Lett 173:83–91

    Article  CAS  Google Scholar 

  • Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL (2004) Biochem Biophys Res Commun 324:269–275

    Article  CAS  Google Scholar 

  • Koppen M, Langer T (2007) Crit Rev Biochem Mol Biol 42:221–242

    Article  CAS  Google Scholar 

  • Kroemer G (2006) Oncogene 25:4630–4632

    Article  CAS  Google Scholar 

  • Lefranc F, Facchini V, Kiss R (2007) Oncologist 12:1395–1403

    Article  CAS  Google Scholar 

  • Liu Y, Fiskum G, Schubert D (2002) J Neurochem 80:780–787

    Article  CAS  Google Scholar 

  • Macchioni L, Davidescu M, Mannucci R, Francescangeli E, Nicoletti I, Roberti R, Corazzi L (2011) Biochim Biophys Acta 1811:203–208

    CAS  Google Scholar 

  • Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA (2001) Genes Dev 15:1311–1333

    Article  CAS  Google Scholar 

  • Pastorino JG, Hoek JB, Shulga N (2005) Cancer Res 65:10545–10554

    Article  CAS  Google Scholar 

  • Pedersen PL (2007) J Bioenerg Biomembr 39:211–222

    Article  CAS  Google Scholar 

  • Pereira da Silva AP, El-Bacha T, Kyaw N, dos Santos RS, da Silva WS, Almeida FCL, Da Poian AT, Galina A (2009) Biochem J 417:717–726

    Article  CAS  Google Scholar 

  • Piccotti L, Marchetti C, Migliorati G, Roberti R, Corazzi L (2002) J Biol Chem 277:12075–12081

    Article  CAS  Google Scholar 

  • Qin J-Z, Xin H, Nickoloff BJ (2010) Biochem Biophys Res Commun 396:495–500

    Article  CAS  Google Scholar 

  • Sciaccaluga M, Fioretti B, Catacuzzeno L, Pagani F, Bertollini C, Rosito M, Catalano M, D’Alessandro G, Santoro A, Cantore G, Ragozzino D, Castigli E, Franciolini F, Limatola C (2010) Am J Physiol Cell Physiol 299:C175–184

    Article  CAS  Google Scholar 

  • Warburg O (1956) Science 123:309–314

    Article  CAS  Google Scholar 

  • Xu R-H, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P (2005) Cancer Res 65:613–621

    Article  CAS  Google Scholar 

  • Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H, Schmidt K, Willson JK, Markowitz S, Zhou S, Diaz LA Jr, Velculescu VE, Lengauer C, Kinzler KW, Vogelstein B, Papadopoulos N (2009) Science 325:1555–1559

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanfranco Corazzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macchioni, L., Davidescu, M., Sciaccaluga, M. et al. Mitochondrial dysfunction and effect of antiglycolytic bromopyruvic acid in GL15 glioblastoma cells. J Bioenerg Biomembr 43, 507–518 (2011). https://doi.org/10.1007/s10863-011-9375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-011-9375-2

Keywords

Navigation