Skip to main content
Log in

Observing Anti-inflammatory and Anti-nociceptive Activities of Glycyrrhizin Through Regulating COX-2 and Pro-inflammatory Cytokines Expressions in Mice

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The present study aimed to investigate the potential anti-inflammatory and anti-nociceptive activities of glycyrrhizin (GL) in mice and to explore the possible related mechanisms. Xylene-induced ear edema, carrageenan-induced paw edema and acetic acid-induced vascular permeability test were used to investigate the anti-inflammatory activities of GL in mice. Anti-nociceptive effects of GL were assessed by using acetic acid-induced writhing, hot plate test and formalin test, as well as evaluation of spontaneous locomotor activity and motor performance. The mRNA expression of pro-inflammatory cytokines (such as TNF-α, IL-6 and iNOS) and the protein expression of cyclooxygenase-2 (COX-2) were explored by using real-time fluorogenic PCR and Western blot, respectively. The results showed that GL significantly reduced xylene-induced ear edema, carrageenan-induced paw edema, and acetic acid-induced vascular permeation. Additionally, GL significantly inhibited the nociceptions induced by acetic acid and formalin. However, the nociceptions could not be decreased by GL in the hot plate test, and GL did not affect spontaneous locomotor activity and motor performance. The expression levels of TNF-α, IL-6, iNOS and COX-2 were significantly downregulated by GL. In conclusion, GL exerts significant anti-inflammatory and analgesic activities by attenuating the expression levels of TNF-α, IL-6, iNOS and COX-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Julius, D., and A.I. Basbaum. 2001. Molecular mechanisms of nociception. Nature 413: 203–210.

    Article  CAS  PubMed  Google Scholar 

  2. Chiu, Y.J., T.H. Huang, C.S. Chiu, T.C. Lu, and W.H. Peng. 2012. Analgesic and anti-inflammatory activities of the aqueous extract from Plectranthus amboinicus (Lour.) Spreng. Both in vitro and in vivo. Evidence-Based Complementary and Alternative Medicine 2012: 508137.

  3. Huang, G.J., B.S. Wang, W.C. Lin, S.S. Huang, and C.Y. Lee. 2012. Antioxidant and anti-inflammatory properties of Longan (Dimocarpus longan Lour.) Pericarp. Evidence-Based Complementary and Alternative Medicine 2012: 709483.

  4. Bogdan, C. 2001. Nitric oxide and the immune response. Nature Immunology 2: 907–916.

    Article  CAS  PubMed  Google Scholar 

  5. Niu, X., H. Zhang, W. Li, Q. Mu, H. Yao, and Y. Wang. 2015. Anti-inflammatory effects of cavidine in vitro and in vivo, a selective COX-2 inhibitor in LPS-induced peritoneal macrophages of mouse. Inflammation 38(2): 923–933.

    Article  CAS  PubMed  Google Scholar 

  6. Utsunomiya, T., M. Kobayashi, R.B. Pollard, and F. Suzuki. 1997. Glycyrrhizin, an active component of licorice roots, reduces morbidity and mortality of mice infected with lethal dose of influenza virus. Antimicrobial Agents and Chemotherapy 41: 551–556.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Okamoto, T. 2000. The protective effect of glycyrrhizin on anti-Fas antibody-induced hepatitis in mice. European Journal of Pharmacology 387: 229–232.

    Article  CAS  PubMed  Google Scholar 

  8. Ohuchi, K., Y. Kamada, S. Tsurufuji, and S. Tsurufuji. 1981. Glycyrrhizin inhibits prostaglandin E2 production by activated peritoneal macrophages from rats. Prostaglandins and Medicine 7: 457–463.

    Article  CAS  PubMed  Google Scholar 

  9. Van Rossum, T.G., A.G. Vulto, W.C. Hop, and S.W. Schalm. 2001. Glycyrrhizin-induced reduction of ALT in European patients with chronic hepatitis C. American Journal of Gastroenterology 96: 2432–2437.

    Article  PubMed  Google Scholar 

  10. He, X.Y., Q.C. Liu, W. Peng, Y.L. Huang, Y.L. Huang, and C.J. Wu. 2013. Bioactivities and serum pharmacochemistry of Qi-Wei-Xiao-Yan-Tang. Pharmaceutical Biology 51: 629–634.

    Article  CAS  PubMed  Google Scholar 

  11. Li, C.Q., L.C. He, H.Y. Dong, and J.Q. Jin. 2007. Screening for the anti-inflammatory activity of fractions and compounds from Atractylodes macrocephala koidz. Journal of Ethnopharmacology 114: 212–217.

    Article  CAS  PubMed  Google Scholar 

  12. Wang, J.P., Y.M. Zhou, Y.J. Ye, X.M. Shang, and Y.L. Cai. 2011. Topical anti-inflammatory and analgesic activity of kirenol isolated from Siegesbeckia orientalis. Journal of Ethnopharmacology 137: 1089–1094.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Q.S., L. Yang, W.Y. Cui, L. Chen, and Y.H. Jiang. 2014. Anti-Inflammatory and anti-nociceptive activities of methanol extract from aerial part of Phlomis younghusbandii Mukerjee. Plos One 9(3), e89149.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Li, M.X., X.F. Shang, Z.P. Jia, and R.X. Zhang. 2010. Phytochemical and biological studies of plants from the genus Phlomis. Chemistry & Biodiversity 7: 283–301.

    Article  CAS  Google Scholar 

  15. Ribeiro, N.A., T.M. Abreu, H.V. Chaves, M.M. Bezerra, H.S. Monteiro, and R.J. Jorge. 2014. Sulfated polysaccharides isolated from the green seaweed Caulerpa racemosa plays antinociceptive and anti-inflammatory activities in a way dependent on HO-1 pathway activation. Inflammation Research 63: 569–580.

    Article  CAS  PubMed  Google Scholar 

  16. Carballo-Villalobos, A.I., M.E. González-Trujano, and F.J. López-Muñoz. 2014. Evidence of mechanism of action of anti-inflammatory/antinociceptive activities of acacetin. European Journal of Pain 18: 396–405.

    Article  CAS  PubMed  Google Scholar 

  17. Khatun, A., M.Z. Imam, and M.S. Rana. 2015. Antinociceptive effect of methanol extract of leaves of Persicaria hydropiper in mice. BMC Complementary and Alternative Medicine 15: 63–71.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Chen, Y.F., Y. Haung, W.Z. Tang, L.P. Qin, and H.C. Zheng. 2009. Antinociceptive activity of Paederosidic Acid Methyl Ester (PAME) from the n-butanol fraction of Paederia scandens in mice. Pharmacology Biochemistry and Behavior 93: 97–104.

    Article  CAS  Google Scholar 

  19. Wang, H.Y., Y.X. Li, L.L. Dun, and T.T. Xu. 2013. Antinociceptive effects of matrine on neuropathic pain induced by chronic constriction injury. Pharmaceutical Biology 7: 844–850.

    Google Scholar 

  20. Soares, D.G., A.M. Godin, R.R. Menezes, R.D. Nogueira, and A.M. Brito. 2014. Anti-inflammatory and antinociceptive activities of Azadirachtin in mice. Planta Medica 80: 630–636.

    Article  CAS  PubMed  Google Scholar 

  21. de Oliveira, A.M., A.F. de Araújo, R.P. Lyra Lemos, L.M. Conserva, J.N. de Souza Ferro, and E. Barreto. 2015. Antinociceptive and anti-inflammatory activity of the siaresinolic acid, a triterpene isolated from the leaves of Sabicea grisea Cham. & Schltdl. var. grisea. Journal of Natural Medicines 69: 232–240.

    Article  PubMed  Google Scholar 

  22. Fang, J.Q., J.Y. Du, Y. Liang, and J.F. Fang. 2013. Intervention of electroacupuncture on spinal p38 MAPK/ATF-2/VR-1 pathway in treating inflammatory pain induced by CFA in rats. Molecular Pain 9: 1–14.

    Article  Google Scholar 

  23. da Silva, K.A., M.N. Manjavachi, A.F. Paszcuk, M. Pivatto, and C. Viegas Jr. 2012. Plant derived alkaloid (-)-cassine induces anti-inflammatory and anti-hyperalgesics effects in both acute and chronic inflammatory and neuropathic pain models. Neuropharmacology 62: 967–977.

    Article  PubMed  Google Scholar 

  24. Khor, Y.H., A.K. Teoh, S.M. Lam, D.C. Mo, and S. Weston. 2009. Increased vascular permeability precedes cellular inflammation as asthma control deteriorates. Clinical and Experimental Allergy 39: 1659–1667.

    Article  CAS  PubMed  Google Scholar 

  25. Wilhelm, D.L., and B. Mason. 1960. Vascular permeability changes in inflammation: the role of endogenous permeability factors in mild thermal injury. British Journal of Experimental Pathology 41: 487–506.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Chang, T.N., J.S. Deng, Y.C. Chang, C.Y. Lee, and L. Jung-Chun. 2012. Ameliorative effects of Scopoletin from Crossostephium chinensis against inflammation pain and its mechanisms in mice. Evidence-Based Complementary and Alternative Medicine 2012: 595603.

    PubMed Central  PubMed  Google Scholar 

  27. Vinegar, R., W. Schreiber, and R. Hugo. 1969. Biphasic development of carrageenan oedema in rats. Journal of Pharmacology and Experimental Therapeutics 166: 96–103.

    CAS  PubMed  Google Scholar 

  28. Niu, X., Y. Li, W. Li, H. Hu, H. Yao, and H. Li. 2014. The anti-inflammatory effects of Caragana tangutica ethyl acetate extract. Journal of Ethnopharmacology 152: 99–105.

    Article  CAS  PubMed  Google Scholar 

  29. Ishola, I.O., E.O. Agbaje, O.O. Adeyemi, and R. Shukla. 2014. Analgesic and anti-inflammatory effects of the methanol root extracts of some selected Nigerian medicinal plants. Pharmaceutical Biology 52: 1208–1216.

    Article  CAS  PubMed  Google Scholar 

  30. Cunha, T.M., G.R. Souza, A.C. Domingues, E.U. Carreira, and C.M. Lotufo. 2012. Stimulation of peripheral Kappa opioid receptors inhibits inflammatory hyperalgesia via activation of the PI3Kγ/AKT/nNOS/NO signaling pathway. Molecular Pain 8: 1–10.

    Article  Google Scholar 

  31. Wang, J., X.W. Wang, Y. Zhang, C.P. Yin, and S.W. Yue. 2011. Nuclear factor-κB mediates TRPV4-NO pathway involved in thermal hyperalgesia following chronic compression of the dorsal root ganglion in rats. Behavioural Brain Research 221: 19–24.

    Article  CAS  PubMed  Google Scholar 

  32. Xu, Y.Q., S.J. Jin, N. Liu, Y.X. Li, and J. Zheng. 2014. Aloperine attenuated neuropathic pain induced by chronic constriction injury via anti-oxidation activity and suppression of the nuclear factor kappa B pathway. Biochemical and Biophysical Research Communications 451: 568–573.

    Article  CAS  PubMed  Google Scholar 

  33. Erchler, W.B., and E.T. Keller. 2000. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annual Review of Medicine 51: 245–270.

    Article  Google Scholar 

  34. Khan, S., O. Shehzad, J. Chun, and Y.S. Kim. 2013. Mechanism underlying anti-hyperalgesic and anti-allodynic properties of anomalin in both acute and chronic inflammatory pain models in mice through inhibition of NF-κB, MAPKs and CREB signaling cascades. European Journal of Pharmacology 718: 448–458.

    Article  CAS  PubMed  Google Scholar 

  35. Smith, W.L., D.L. DeWitt, and R.M. Garavito. 2000. Cyclooxygenases: structural, cellular and molecular biology. Annual Review of Biochemistry 69: 145–182.

    Article  CAS  PubMed  Google Scholar 

  36. Collier, H.O.J., L.C. Dinneen, C.A. Johnson, and C. Schneider. 1968. The abdominal constriction response and its suppression by analgesic drugs in the mouse. British Journal of Pharmacology 32: 295–310.

    CAS  Google Scholar 

  37. Damasceno, S.R., F.R. Oliveira, N.S. Carvalho, C.F. Brito, and I.S. Silva. 2014. Carvacryl acetate, a derivative of carvacrol, reduces nociceptive and inflammatory response in mice. Life Sciences 94: 58–66.

    Article  CAS  PubMed  Google Scholar 

  38. Afsar, T., M.R. Khan, S. Razak, S. Ullah, and B. Mirza. 2015. Antipyretic, anti-inflammatory and analgesic activity of Acacia hydaspica R. Parker and its phytochemical analysis. BMC Complementary and Alternative Medicine 15: 136–148.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Xu, Q., Y. Wang, S. Guo, Z. Shen, Y. Wang, and L. Yang. 2014. Anti-inflammatory and analgesic activity of aqueous extract of Flos populi. Journal of Ethnopharmacology 152: 540–545.

    Article  PubMed  Google Scholar 

  40. Devaraj, S., A.S. Esfahani, S. Ismail, S. Ramanathan, and M.F. Yam. 2010. Evaluation of the anti-nociceptive activity and acute oral toxicity of standardized ethanolic extract of the rhizome of Curcuma xanthorrhiza Roxb. Molecules 15: 2925–2934.

    Article  CAS  PubMed  Google Scholar 

  41. Sani, M.H., Z.A. Zakaria, T. Balan, L.K. Teh, and M.Z. Salleh. 2012. Antinociceptive activity of methanol extract of Muntingia calabura leaves and the mechanisms of action involved. Evidence-Based Complementary and Alternative Medicine 2012: 89361.

    Article  Google Scholar 

  42. Tsai, D.S., M.H. Huang, J.C. Tsai, Y.S. Chang, and Y.J. Chiu. 2015. Analgesic and anti-inflammatory activities of Rosa taiwanensis nakai in mice. Journal of Medicinal Food 18: 592–600.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Natural Science Foundation of Ningxia (Grant No. Nz13227). We thank Dr. Margaret for editing our manuscript.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Qiang Yu.

Additional information

Hong-Ling Wang and Yu-Xiang Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HL., Li, YX., Niu, YT. et al. Observing Anti-inflammatory and Anti-nociceptive Activities of Glycyrrhizin Through Regulating COX-2 and Pro-inflammatory Cytokines Expressions in Mice. Inflammation 38, 2269–2278 (2015). https://doi.org/10.1007/s10753-015-0212-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0212-3

KEY WORDS

Navigation