Skip to main content

Advertisement

Log in

Aspirin Inhibits MMP-2 and MMP-9 Expression and Activity Through PPARα/γ and TIMP-1-Mediated Mechanisms in Cultured Mouse Celiac Macrophages

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Aspirin is an anti-inflammatory drug, and has been widely used for the prevention of cardio-cerebrovascular events. Matrix metalloproteinase (MMP)-2 and MMP-9 can degrade the extracellular matrix and may be critical for the development and disruption of atherosclerotic plaques, while tissue inhibitor of metalloproteinase (TIMP)-1 may inhibit the degradation of extracellular matrix. The purpose of present study was to investigate the inhibitory effects of aspirin on MMP-2 and MMP-9 expression and activity in cultured mouse celiac macrophages, and to determine the possible mechanisms. The results showed that MMP-2/9 mRNA expression and release were significantly decreased after cultured mouse celiac macrophages were treated with aspirin 12.5–50 μg/ml for 24 h, while the TIMP-1 mRNA expression and release, and peroxisome proliferator-activated receptor (PPAR) α/γ mRNA expression were increased after the same treatment. Moreover the aspirin-induced down-regulation of MMP-2/9 mRNA expression and reduction of MMP-9 release were notably alleviated after pretreatment with specific inhibitors of PPARα/γ. These results suggested that aspirin could inhibit the expression and release of MMP-2/9 by up-regulation of PPARα/γ gene expression, and also inhibit the activity of MMP-2/9 by induction of TIMP-1 expression, which might be good for the stabilization of atherosclerotic plaques and the prevention of cardio-cerebrovascular events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Libby, P. 2002. Inflammation in atherosclerosis. Nature 420:868–874. doi:10.1038/nature01323.

    Article  PubMed  CAS  Google Scholar 

  2. Shah, P. K. 1998. Role of inflammation and metalloproteinases in plaque disruption and thrombosis. Vasc. Med. 3:199–206.

    PubMed  CAS  Google Scholar 

  3. Dollery, C. M., J. R. McEwan, and A. M. Henney. 1995. Matrix metalloproteinases and cardiovascular disease. Circ. Res. 77:863–868.

    PubMed  CAS  Google Scholar 

  4. Galis, Z. S., and J. J. Khatri. 2002. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ. Res. 90:251–262.

    PubMed  CAS  Google Scholar 

  5. Galis, Z. S., C. Johnson, D. Godin, R. Magid, J. M. Shipley, R. M. Senior, and E. Ivan. 2002. Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling. Circ. Res. 91:852–859. doi:10.1161/01.RES.0000041036.86977.14.

    Article  PubMed  CAS  Google Scholar 

  6. Cho, A., and M. A. Reidy. 2002. Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circ. Res. 91:845–851. doi:10.1161/01.RES.0000040420.17366.2E.

    Article  PubMed  CAS  Google Scholar 

  7. Ezzahiri, R., F. R. Stassen, H. A. Kurvers, M. M. van Pul, P. J. Kitslaar, and C. A. Bruggeman. 2003. Chlamydia pneumoniae infection induces an unstable atherosclerotic plaque phenotype in LDL-receptor, ApoE double knockout mice. Eur. J. Vasc. Endovasc. Surg. 26:88–95. doi:10.1053/ejvs.2002.1913.

    Article  PubMed  CAS  Google Scholar 

  8. Nishimura, K., M. Ikebuchi, Y. Kanaoka, S. Ohgi, E. Ueta, E. Nanba, and H. Ito. 2003. Relationships between matrix metalloproteinases and tissue inhibitor of metalloproteinases in the wall of abdominal aortic aneurysms. Int. Angiol. 22:229–238.

    PubMed  CAS  Google Scholar 

  9. Auge, N., F. Maupas-Schwalm, M. Elbaz, J. C. Thiers, A. Waysbort, S. Itohara, H. W. Krell, R. Salvayre, and A. Negre-Salvayre. 2004. Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation. Circulation. 110:571–578. doi:10.1161/01.CIR.0000136995.83451.1D.

    Article  PubMed  CAS  Google Scholar 

  10. Zaltsman, A. B., S. J. George, and A. C. Newby. 1999. Increased secretion of tissue inhibitors of metalloproteinases 1 and 2 from the aortas of cholesterol fed rabbits partially counterbalances increased metalloproteinase activity. Arterioscler. Thromb. Vasc. Biol. 19:1700–1707.

    PubMed  CAS  Google Scholar 

  11. Vincenti, M. P. 2001. The matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) genes. Transcriptional and posttranscriptional regulation, signal transduction and cell-type-specific expression. Methods Mol. Biol. 151:121–148.

    PubMed  CAS  Google Scholar 

  12. Blanquart, C., O. Barbier, J. C. Fruchart, B. Staels, and C. Glineur. 2003. Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. J. Steroid Biochem. Mol. Biol. 85:267–273. doi:10.1016/S0960-0760(03)00214-0.

    Article  PubMed  CAS  Google Scholar 

  13. Marx, N., H. Duez, J. C. Fruchart, and F. Staels. 2004. Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells. Circ. Res. 94:1168–1178. doi:10.1161/01.RES.0000127122.22685.0A.

    Article  PubMed  CAS  Google Scholar 

  14. Ringseis, R., N. Schulz, D. Saal, and K. Eder. 2008. Troglitazone but not conjugated linoleic acid reduces gene expression and activity of matrix-metalloproteinases-2 and -9 in PMA-differentiated THP-1 macrophages. J. Nutr. Biochem. 19:594–603. doi:10.1016/j.jnutbio.2007.08.003.

    Article  PubMed  CAS  Google Scholar 

  15. Hanefeld, M., N. Marx, A. Pfutzner, W. Baurecht, G. Lubben, E. Karagiannis, U. Stier, and T. Forst. 2007. Anti-inflammatory effects of pioglitazone and/or simvastatin in high cardiovascular risk patients with elevated high sensitivity C-reactive protein: the piostat study. J. Am. Coll. Cardiol. 49:290–297. doi:10.1016/j.jacc.2006.08.054.

    Article  PubMed  CAS  Google Scholar 

  16. Marfella, R., M. D’Amico, C. D. Filippo, A. Baldi, M. Siniscalchi, F. C. Sasso, M. Portoghese, O. Carbonara, B. Crescenzi, P. Sangiuolo, G. F. Nicoletti, R. Rossiello, F. Ferraraccio, F. Cacciapuoti, M. Verza, L. Coppola, F. Rossi, and G. Paolisso. 2006. Increased activity of the ubiquitin–proteasome system in patients with symptomatic carotid disease is associated with enhanced inflammation and may destabilize the atherosclerotic plaque effects of rosiglitazone treatment. J. Am. Coll. Cardiol. 47:2444–2455. doi:10.1016/j.jacc.2006.01.073.

    Article  PubMed  CAS  Google Scholar 

  17. Mehta, P. 2002. Aspirin in the prophylaxis of coronary artery disease. Curr. Opin. Cardiol. 17:552–558. doi:10.1097/00001573-200209000-00017.

    Article  PubMed  Google Scholar 

  18. Akaike, M., H. Azuma, A. Kagawa, K. Matsumoto, I. Hayashi, K. Tamura, T. Nishiuchi, T. Iuchi, N. Takamori, K. Aihara, T. Yoshida, Y. Kanagawa, and T. Matsumoto. 2002. Effect of aspirin treatment on serum concentrations of lipoprotein(a) in patients with atherosclerotic diseases. Clin. Chem. 48:1454–1459.

    PubMed  CAS  Google Scholar 

  19. Ranga, G. S., O. P. Kalra, H. Tandon, J. K. Gambhir, and G. Mehrotra. 2007. Effect of aspirin on lipoprotein(a) in patients with ischemic stroke. J. Stroke Cerebrovasc. Dis. 16:220–224. doi:10.1016/j.jstrokecerebrovasdis.2007.05.003.

    Article  PubMed  Google Scholar 

  20. Vinals, M., I. Bermudez, G. Llaverias, M. Alegret, R. M. Sanchez, M. Vazquez-Carrera, and J. C. Laguna. 2005. Aspirin increases CD36, SR-BI, and ABCA1 expression in human THP-1 macrophages. Cardiovasc. Res. 66:141–149. doi:10.1016/j.cardiores.2004.12.024.

    Article  PubMed  CAS  Google Scholar 

  21. Karna, E., and J. A. Palka. 2002. Inhibitory effect of acetylsalicylic acid on metalloproteinase activity in human lung adenocarcinoma at different stages of differentiation. Eur. J. Pharmacol. 443:1–6. doi:10.1016/S0014-2999(02)01557-1.

    Article  PubMed  CAS  Google Scholar 

  22. Murono, S., T. Yoshizaki, H. Sato, H. Takeshita, M. Furukawa, and J. S. Pagano. 2000. Aspirin inhibits tumor cell invasiveness induced by Epstein–Barr virus latent membrane protein-1 through suppression of matrix metalloproteinase-9 expression. Cancer Res. 60:2555–2561.

    PubMed  CAS  Google Scholar 

  23. Jiang, M. C., C. F. Liao, and P. H. Lee. 2001. Aspirin inhibits matrix metalloproteinase-2 activity, increases E-cadherin production, and inhibits in vitro invasion of tumor cells. Biochem. Biophys. Res. Commun. 282:671–677. doi:10.1006/bbrc.2001.4637.

    Article  PubMed  CAS  Google Scholar 

  24. Xue, J., Y. N. Hua, Z. L. Gu, K. Y. Wu, and M. L. Xie. 2008. Study of aspirin on inhibiting the atherosclerotic plaque rupture and MMP-2 expression of abdominal aorta in atherosclerotic rabbits. Chin. Pharmacol. Bull. 24(10):1335–1339.

    CAS  Google Scholar 

  25. Hua, Y. N., J. Xue, F. Sun, L. J. Zhu, and M. L. Xie. 2008. Aspirin inhibits MMP-2 and MMP-9 expressions and activities through upregulation of PPAR α/γ and TIMP gene expressions in ox-LDL-stimulated macrophages derived from human monocytes. Pharmacology 83:18–25. doi:10.1159/000166183.

    Article  PubMed  Google Scholar 

  26. Saiki, I., and I. J. Fidler. 1985. Synergistic activation by recombinant mouse IFN-gmma and muramyl dipeptide of tumoricidal properties in mouse macrophages. J. Immunol. 135:684–688.

    PubMed  CAS  Google Scholar 

  27. Pillinger, M. H., P. B. Rosenthal, S. N. Tolani, B. Apsel, V. Dinsell, J. Greenberg, E. S. L. Chan, P. F. Gomez, and S. B. Abramson. 2003. Cyclooxygenase-2-derived E prostaglandins down-regulate matrix metalloproteinase-1 expression in fibroblast-like synoviocytes via inhibition of extracellular signal-regulated kinase activation. J. Immunol. 171:6080–6089.

    PubMed  CAS  Google Scholar 

  28. Orbe, J., L. Fernandez, J. A. Rodriguez, G. Rabago, M. Belzunce, A. Monasterio, C. Roncal, and J. A. Paramo. 2003. Different expression of MMPs/TIMP-1 in human atherosclerotic lesions. Relation to plaque features and vascular bed. Atherosclerosis 170:269–276. doi:10.1016/S0021-9150(03)00251-X.

    Article  PubMed  CAS  Google Scholar 

  29. Rouis, M., C. Adamy, N. Duverger, P. Lesnik, P. Horellou, M. Moreau, F. Emmanuel, J. M. Caillaud, P. M. Laplaud, C. Dachet, and M. J. Chapman. 1999. Adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-1 reduces atherosclerotic lesions in apolipoprotein E-deficient mice. Circulation 100:533–540.

    PubMed  CAS  Google Scholar 

  30. Allaire, E., R. Forgough, M. Clowes, B. Starcher, and A. W. Clowes. 1998. Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. J. Clin. Invest. 102:1413–1420. doi:10.1172/JCI2909.

    Article  PubMed  CAS  Google Scholar 

  31. Lemaitre, V., P. D. Soloway, and J. D’Armiento. 2003. Increased medial degradation with pseudo-aneurysm formation in apolipoprotein E-knockout mice deficient in tissue inhibitor of metalloproteinases-1. Circulation 107:333–338. doi:10.1161/01.CIR.0000044915.37074.5C.

    Article  PubMed  CAS  Google Scholar 

  32. Clark, I. M., T. E. Swingler, C. L. Sampieri, and D. R. Edwards. 2008. The regulation of matrix metalloproteinases and their inhibitors. Int. J. Biochem. Cell. Biol. 40:1362–1378. doi:10.1016/j.biocel.2007.12.006.

    Article  PubMed  CAS  Google Scholar 

  33. Kopp, E., and S. Ghosh. 1994. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265:956–959. doi:10.1126/science.8052854.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Natural Science Foundation of Jiangsu Province (No. BK2005029), People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xie Meilin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yiqin, Y., Meilin, X., Jie, X. et al. Aspirin Inhibits MMP-2 and MMP-9 Expression and Activity Through PPARα/γ and TIMP-1-Mediated Mechanisms in Cultured Mouse Celiac Macrophages. Inflammation 32, 233–241 (2009). https://doi.org/10.1007/s10753-009-9125-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-009-9125-3

KEY WORDS

Navigation