Skip to main content

Advertisement

Log in

Anti-Inflammatory Effects of Angiotensin Receptor Blockers in the Brain and the Periphery

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In addition to regulating blood pressure, Angiotensin II (Ang II) exerts powerful pro-inflammatory effects in hypertension through stimulation of its AT1 receptors, most clearly demonstrated in peripheral arteries and in the cerebral vasculature. Administration of Ang II receptor blockers (ARBs) decreases hypertension-related vascular inflammation in peripheral organs. In rodent models of genetic hypertension, ARBs reverse the inflammation in the cerebral microcirculation. We hypothesized that ARBs could be effective in inflammatory conditions beyond hypertension. Our more recent studies, summarized here, indicate that this is indeed the case. We used the model of systemic administration of the bacterial endotoxin lipopolysaccharide (LPS). LPS produces a robust initial inflammatory reaction, the innate immune response, in peripheral organs and in the brain. Pretreatment with the ARB candesartan significantly diminishes the response to LPS, including reduction of pro-inflammatory cytokine release to the general circulation and decreased production and release of the pro-inflammatory adrenal hormone aldosterone. In addition, the ARB very significantly decreased the LPS-induced gene expression of pro-inflammatory cytokines and microglia activation in the brain. Our results demonstrate that AT1 receptor activity is essential for the unrestricted development of full-scale innate immune response in the periphery and in the brain. ARBs, due to their immune response-limiting properties, may be considered as therapeutically useful in a number of inflammatory diseases of the peripheral organs and the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ang II:

Angiotensin II

AT1 :

Angiotensin II receptor type 1

COX-2:

Cyclooxygenase 2

ICAM-1:

Intercellular adhesion molecule 1

IκBα:

Nuclear factor of kappa-light polypeptide gene enhancer in B-cells inhibitor, alpha

IL-1β:

Interleukin 1β

IL-6:

Interleukin 6

iNOS:

Inducible nitric oxide synthase

LBP:

LPS binding protein

MAPKs:

Mitogen-activated protein kinases

MCP-1:

Monocyte chemotactic protein-1

NFκB:

Nuclear factor κB

PGE2 :

Prostaglandin E2

PLA2 :

Phospholipase A2

ROS:

Reactive oxygen species

sCD14:

Soluble CD14

TLR-4:

Toll-like receptor 4

TNF-α:

Tumor necrosis factor alpha

VCAM-1:

Vascular cell adhesion molecule 1

References

  • Ando H, Zhou J, Macova M, Imboden H, Saavedra JM (2004) Angiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats. Stroke 35:1726–1731. doi:10.1161/01.STR.0000129788.26346.18

    Article  PubMed  CAS  Google Scholar 

  • Armando I, Carranza A, Nishimura Y, Hoe KL, Barontini M, Terrón JA, Falcón-Neri A, Ito T, Juorio AV, Saavedra JM (2001) Peripheral administration of an angiotensin II AT(1) receptor antagonist decreases the hypothalamic-pituitary-adrenal response to isolation stress. Endocrinology 142:3880–3889. doi:10.1210/en.142.9.3880

    Article  PubMed  CAS  Google Scholar 

  • Armando I, Volpi S, Aguilera G, Saavedra JM (2007) Angiotensin II AT1 receptor blockade prevents the hypothalamic corticotropin-releasing factor response to isolation stress. Brain Res 1142:92–99. doi:10.1016/j.brainres.2007.01.037

    Article  PubMed  CAS  Google Scholar 

  • Basile JN, Chrysant S (2006) The importance of early antihypertensive efficacy: the role of angiotensin II receptor blocker therapy. J Hypertens 24(Suppl):S131–S137

    Google Scholar 

  • Bosshart H, Heinzelmann M (2007) Targeting bacterial endotoxin: two sides of a coin. Ann N Y Acad Sci 1096:1–17. doi:10.1196/annals.1397.064

    Article  PubMed  CAS  Google Scholar 

  • Bregonzio C, Armando I, Ando H, Jezova M, Baiardi G, Saavedra JM (2003) Anti-inflammatory effects of angiotensin II AT1 receptor antagonism prevent stress-induced gastric injury. Am J Physiol Gastrointest Liver Physiol 285:G414–G423

    PubMed  CAS  Google Scholar 

  • Bregonzio C, Seltzer A, Armando I, Pavel J, Saavedra JM (2008) Angiotensin II AT(1) receptor blockade selectively enhances brain AT(2) receptor expression, and abolishes the cold-restraint stress-induced increase in tyrosine hydroxylase mRNA in the locus coeruleus of spontaneously hypertensive rats. Stress 11:457–466

    Article  PubMed  CAS  Google Scholar 

  • Bruce DG, Davis WA, Casey GP, Starkstein SE, Clarnette RM, Almeida OP, Davis TM (2008) Predictors of cognitive decline in older individuals with diabetes. Diabetes Care 31:2103–2107. doi:10.2337/dc08-0562

    Article  PubMed  CAS  Google Scholar 

  • Cheng ZJ, Vapaatalo H, Mervaala E (2005) Angiotensin II and vascular inflammation. Med Sci Monit 11:RA194–RA205

    PubMed  CAS  Google Scholar 

  • Ching S, Zhang H, Belevych N, He L, Lai W, Pu X, Jaeger LB, Chen Q, Quan N (2007) Endothelial-specific knockdown of interleukin-1 (IL-1) type 1 receptor differentially alters CNS responses to IL-1 depending on its route of administration. J Neurosci 27:10476–10486. doi:10.1523/JNEUROSCI.3357-07.2007

    Article  PubMed  CAS  Google Scholar 

  • Connell JM, Davies E (2005) The new biology of aldosterone. J Endocrinol 186:1–20. doi:10.1677/joe.1.06017

    Article  PubMed  CAS  Google Scholar 

  • Cover PO, Slater D, Buckingham JC (2001) Expression of cyclooxygenase enzymes in rat hypothalamo-pituitary-adrenal axis: effects of endotoxin and glucocorticoids. Endocrine 16:123–131. doi:10.1385/ENDO:16:2:123

    Article  PubMed  CAS  Google Scholar 

  • Dahlöf B (2006) Prospects for the prevention of stroke. J Hypertens 24(Suppl):S3–S9

    Google Scholar 

  • Dauphinee SM, Karsan A (2006) Lipopolysaccharide signaling in endothelial cells. Lab Invest 86:9–22. doi:10.1038/labinvest.3700366

    Article  PubMed  CAS  Google Scholar 

  • Dong Z, Wei H, Sun R, Tian Z (2007) The roles of innate immune cells in liver injury and regeneration. Cell Mol Immunol 4:241–252

    PubMed  CAS  Google Scholar 

  • Dutta G, Zhang P, Liu B (2008) The lipopolysaccharide Parkinson’s disease animal model: mechanistic studies and drug discovery. Fund Clin Pharmacol 22:453–464

    Article  CAS  Google Scholar 

  • Fassbender K, Walter S, Kühl S, Landmann R, Ishii K, Bertsch T, Stalder AK, Muehlhauser F, Liu Y, Ulmer AJ, Rivest S, Lentschat A, Gulbins E, Jucker M, Staufenbiel M, Brechtel K, Walter J, Multhaup G, Penke B, Adachi Y, Hartmann T, Beyreuther K (2004) The LPS receptor (CD14) links innate immunity with Alzheimer’s disease. FASEB J 18:203–205

    PubMed  CAS  Google Scholar 

  • Garden GA, Moller T (2006) Microglia biology in health and disease. J Neuroimmune Pharmacol 1:127–137. doi:10.1007/s11481-006-9015-5

    Article  PubMed  Google Scholar 

  • Gomez-Sanchez EP (2004) Brain mineralocorticoid receptors: orchestrators of hypertension and end-organ disease. Curr Opin Nephrol Hypertens 13:191–196. doi:10.1097/00041552-200403000-00007

    Article  PubMed  CAS  Google Scholar 

  • Grinevich V, Ma XM, Herman JP, Jezova D, Akmayev I, Aguilera G (2001) Effect of repeated lipopolysaccharide administration on tissue cytokine expression and hypothalamic-pituitary-adrenal axis activity in rats. J Neuroendocrinol 13:711–723. doi:10.1046/j.1365-2826.2001.00684.x

    Article  PubMed  CAS  Google Scholar 

  • Han J, Ulevitch RJ (2005) Limiting inflammatory responses during activation of innate immunity. Nat Immunol 6:1198–1205. doi:10.1038/ni1274

    Article  PubMed  CAS  Google Scholar 

  • Henry CJ, Huang Y, Wynne AM, Godbout JP (2008) Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1β and anti-inflammatory Il-10 cytokines. Brain Behav Immun. doi:10.1016/j.bbi.2008.09-002

    PubMed  Google Scholar 

  • Hopkins SJ (2007) Central nervous system recognition of peripheral inflammation: a neural, hormonal collaboration. Acta Biomed 78(Suppl 1):231–247

    PubMed  Google Scholar 

  • Ichitani Y, Holmberg K, Maunsbach AB, Haeggstrom JZ, Samuelsson B, De Witt D, Hökfelt T (2001) Cyclooxygenase-1 and cyclooxygenase-2 expression in rat kidney and adrenal gland after stimulation with systemic lipopolysaccharide: in situ hybridization and immunocytochemical studies. Cell Tissue Res 303:235–252. doi:10.1007/s004410000296

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Yamakawa H, Bregonzio C, Terrón JA, Falcón-Neri A, Saavedra JM (2002) Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an angiotensin II AT1 antagonist. Stroke 33:2297–2303. doi:10.1161/01.STR.0000027274.03779.F3

    Article  PubMed  CAS  Google Scholar 

  • Jöhren O, Saavedra JM (1996) Expression of AT1A and AT1B angiotensin II receptor messenger RNA in forebrain of 2-wk-old rats. Am J Physiol 271:E104–E112

    PubMed  Google Scholar 

  • Konsman JP, Parnet P, Dantzer R (2002) Cytokine-induced sickness behavior: mechanisms and implications. Trends Neurosci 25:154–159. doi:10.1016/S0166-2236(00)02088-9

    Article  PubMed  CAS  Google Scholar 

  • Laflamme N, Rivest S (2001) Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 15:155–163. doi:10.1096/fj.00-0339com

    Article  PubMed  CAS  Google Scholar 

  • Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA 100:8514–8519. doi:10.1073/pnas.1432609100

    Article  PubMed  CAS  Google Scholar 

  • Lemarié CA, Paradis P, Schiffrin EL (2008) New insights on signaling cascades induced by cross-talk between angiotensin II and aldosterone. J Mol Med 86:673–678. doi:10.1007/s00109-008-0323-5

    Article  PubMed  CAS  Google Scholar 

  • Marchesi C, Paradis P, Schiffrin EL (2008) Role of the renin-angiotensin system in vascular inflammation. Trends Pharmacol Sci 29:367–374. doi:10.1016/j.tips.2008.05.003

    Article  PubMed  CAS  Google Scholar 

  • Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292:C82–C97. doi:10.1152/ajpcell.00287.2006

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, Verma IM (1995) Rel/NF-kappa B/I kappa B story. Adv Cancer Res 66:255–292. doi:10.1016/S0065-230X(08)60257-2

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki A, Kitaichi N, Ohgami K, Iwata D, Jin XH, Iwabuchi K, Morohashi T, Ohno S, Onoe K (2008) Anti-inflammatory effect of angiotensin type 1 receptor antagonist on endotoxin-induced uveitis in rats. Graefes Arch Clin Exp Ophthalmol 246:747–757

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi M, Nagata K, Imoto T, Goto O, Ishida A, Watanabe T (2003) ANG II is involved in the LPS-induced production of proinflammatory cytokines in dehydrated rats. Am J Physiol Regul Integr Comp Physiol 284:R1092–R1097

    PubMed  CAS  Google Scholar 

  • Miyoshi M, Miyano K, Moriyama N, Taniguchi M, Watanabe T (2008) Angiotensin type 1 receptor antagonist inhibits lipopolysaccharide-induced stimulation of rat microglial cells by suppressing nuclear factor kappa B and activator protein-1 activation. Eur J NeuroSci 27:343–351

    Article  PubMed  Google Scholar 

  • Moncek F, Aguilera G, Jezova D (2003) Insufficient activation of adrenocortical but not adrenomedullary hormones during stress in rats subjected to repeated immune challenge. J Neuroimmunol 142:86–92. doi:10.1016/S0165-5728(03)00268-6

    Article  PubMed  CAS  Google Scholar 

  • Nadeau S, Rivest S (2003) Glucocorticoids play a fundamental role in protecting the brain during innate immune response. J Neurosci 23:5536–5544

    PubMed  Google Scholar 

  • Nishimura Y, Ito T, Hoe K, Saavedra JM (2000a) Chronic peripheral administration of the angiotensin II AT(1) receptor antagonist candesartan blocks brain AT(1) receptors. Brain Res 871:29–38. doi:10.1016/S0006-8993(00)02377-5

    Article  PubMed  CAS  Google Scholar 

  • Nishimura Y, Ito T, Saavedra JM (2000b) Angiotensin II AT(1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke 31:2478–2486

    PubMed  CAS  Google Scholar 

  • Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462. doi:10.1002/glia.20467

    Article  PubMed  Google Scholar 

  • Quan N (2008) Immune-to-brain signaling: how important are the blood–brain barrier-independent pathways? Mol Neurobiol 37:142–152. doi:10.1007/s12035-008-8026-z

    Article  PubMed  CAS  Google Scholar 

  • Quan N, Banks WA (2007) Brain-immune communications pathways. Brain Behav Immun 21:727–735. doi:10.1016/j.bbi.2007.05.005

    Article  PubMed  CAS  Google Scholar 

  • Quan N, Whiteside M, Kim L, Herkenham M (1997) Induction of inhibitory factor kappaBalpha mRNA in the central nervous system after peripheral lipopolysaccharide administration: an in situ hybridization histochemistry study in the rat. Proc Natl Acad Sci USA 94:10985–10990. doi:10.1073/pnas.94.20.10985

    Article  PubMed  CAS  Google Scholar 

  • Quan N, Stern EL, Whiteside MB, Herkenham M (1999) Induction of pro-inflammatory cytokine mRNAs in the brain after peripheral injection of subseptic doses of lipopolysaccharide in the rat. J Neuroimmunol 93:72–80. doi:10.1016/S0165-5728(98)00193-3

    Article  PubMed  CAS  Google Scholar 

  • Quan N, He L, Lai W (2003) Endothelial activation is an intermediate step for peripheral lipopolysaccharide induced activation of paraventricular nucleus. Brain Res Bull 59:447–452. doi:10.1016/S0361-9230(02)00951-6

    Article  PubMed  CAS  Google Scholar 

  • Rivest S (2003) Molecular insights on the cerebral innate immune system. Brain Behav Immun 17:13–19. doi:10.1016/S0889-1591(02)00055-7

    Article  PubMed  CAS  Google Scholar 

  • Rivest S, Lacroix S, Vallières L, Nadeau S, Zhang J, Laflamme N (2000) How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. Proc Soc Exp Biol Med 223:22–38. doi:10.1046/j.1525-1373.2000.22304.x

    Article  PubMed  CAS  Google Scholar 

  • Rogers J, Mastroeni D, Leonard B, Joyce J, Grover A (2007) Neuroinflammation in Alzheimer’s disease and Parkinson’s disease: are microglia pathogenic in either disorder? Int Rev Neurobiol 82:235–246. doi:10.1016/S0074-7742(07)82012-5

    Article  PubMed  CAS  Google Scholar 

  • Saavedra JM (2005) Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities. Cell Mol Neurobiol 25:485–512. doi:10.1007/s10571-005-4011-5

    Article  PubMed  CAS  Google Scholar 

  • Saavedra JM, Benicky J (2007) Brain and peripheral angiotensin II play a major role in stress. Stress 10:185–193. doi:10.1080/10253890701350735

    Article  PubMed  CAS  Google Scholar 

  • Saavedra JM, Nishimura Y (1999) Angiotensin and cerebral blood flow. Cell Mol Neurobiol 19:553–573. doi:10.1023/A:1006995016403

    Article  PubMed  CAS  Google Scholar 

  • Saavedra JM, Armando I, Bregonzio C, Juorio A, Macova M, Pavel J, Sánchez-Lemus E (2006a) A centrally acting, anxiolytic angiotensin II AT1 receptor antagonist prevents the isolation stress-induced decrease in cortical CRF1 receptor and benzodiazepine binding. Neuropsychopharm 31:1123–1134

    CAS  Google Scholar 

  • Saavedra JM, Benicky J, Zhou J (2006b) Angiotensin II: multitasking in the brain. J Hypertens 24(Suppl):S131–S137. doi:10.1097/01.hjh.0000220418.09021.ee

    Article  CAS  Google Scholar 

  • Saavedra JM, Benicky J, Zhou J (2006c) Mechanisms of the anti-ischemic effect of angiotensin II AT (1) receptor antagonists in the brain. Cell Mol Neurobiol 26:1099–1111

    PubMed  CAS  Google Scholar 

  • Sánchez-Lemus E, Murakami Y, Larrayoz-Roldan IM, Moughamian AJ, Pavel J, Nishioku T, Saavedra JM (2008) Angiotensin II AT1 receptor blockade decreases lipopolysaccharide-induced inflammation in the rat adrenal gland. Endocrinology 149:5177–5188. doi:10.1210/en.2008-0242

    Article  PubMed  CAS  Google Scholar 

  • Sanvitto GL, Jöhren O, Häuser W, Saavedra JM (1997) Water deprivation upregulates ANG II AT1 binding and mRNA in rat subfornical organ and anterior pituitary. Am J Physiol 273:E156–E163

    PubMed  CAS  Google Scholar 

  • Sanz-Rosa D, Oubiña MP, Cediel E, de las Heras N, Vegazo O, Jiménez J, Lahera V, Cachofeiro V (2005) Effect of AT1 receptor antagonism on vascular and circulating inflammatory mediators in SHR: role of NF-κB/IκB system. Am J Physiol Heart Circ Physiol 288:H111–H115. doi:10.1152/ajpheart.01061.2003

    Article  PubMed  CAS  Google Scholar 

  • Savoia C, Schiffrin EL (2006) Inflammation in hypertension. Curr Opin Nephrol Hypertens 15:152–158. doi:10.1097/01.mnh.0000203189.57513.76

    PubMed  CAS  Google Scholar 

  • Savoia C, Schiffrin EL (2007) Vascular inflammation in hypertension and diabetes: molecular mechanisms and therapeutic interventions. Clin Sci 112:375–384. doi:10.1042/CS20060247

    Article  PubMed  CAS  Google Scholar 

  • Shlyakhto E (2007) Observational Study on Cognitive function And systolic blood pressure Reduction (OSCAR): preliminary analysis of 6-month data from >10, 000 patients and review of the literature. Curr Med Res Opin 23(Suppl 5):S13–S18. doi:10.1185/030079907X260719

    Article  PubMed  Google Scholar 

  • Singh AK, Jiang Y (2004) How does peripheral lipopolysaccharide induce gene expression in the brain of rats? Toxicology 201:197–207. doi:10.1016/j.tox.2004.04.015

    Article  PubMed  CAS  Google Scholar 

  • Stier CT Jr, Rocha R, Chander PN (2005) Effect of aldosterone and MR blockade on the brain and the kidney. Heart Fail Rev 10:53–62. doi:10.1007/s10741-005-2349-x

    Article  PubMed  CAS  Google Scholar 

  • Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57:563–581. doi:10.1016/S0301-0082(98)00069-0

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J (2003) Inflammation and angiotensin II. Int J Biochem Cell Biol 35:881–900. doi:10.1016/S1357-2725(02)00271-6

    Article  PubMed  CAS  Google Scholar 

  • Triantafilou M, Triantafilou K (2005) The dynamics of LPS recognition: complex orchestration of multiple receptors. J Endotoxin Res 11:5–11

    PubMed  CAS  Google Scholar 

  • Tsutsumi K, Saavedra JM (1991a) Characterization and development of angiotensin II receptor subtypes (AT1 and AT2) in rat brain. Am J Physiol 261:R209–R216

    PubMed  CAS  Google Scholar 

  • Tsutsumi K, Saavedra JM (1991b) Angiotensin-II receptor subtypes in median eminence and basal forebrain areas involved in regulation of pituitary function. Endocrinology 129:3001–3008

    Article  PubMed  CAS  Google Scholar 

  • Tsutsumi K, Strömberg C, Saavedra JM (1992) Characterization of angiotensin II receptor subtypes in the rat spleen. Peptides 13:291–296. doi:10.1016/0196-9781(92)90111-F

    Article  PubMed  CAS  Google Scholar 

  • Vakharia K, Hinson JP (2005) Lipopolysaccharide directly stimulates cortisol secretion by human adrenal cells by a cyclooxygenase-dependent mechanism. Endocrinology 146:1398–1402. doi:10.1210/en.2004-0882

    Article  PubMed  CAS  Google Scholar 

  • Wluka A, Olszewski WL (2006) Innate and adaptive processes in the spleen. Ann Transplant 11:22–29

    PubMed  Google Scholar 

  • Xia Y, Yamagata K, Krukoff TL (2006) Differential expression of the CD14/TLR4 complex and inflammatory signaling molecules following i.c.v. administration of LPS. Brain Res 109:85–95. doi:10.1016/j.brainres.2006.03.112

    Article  CAS  Google Scholar 

  • Yamakawa H, Jezova M, Ando H, Saavedra JM (2003) Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition. J Cereb Blood Flow Metab 23:371–380. doi:10.1097/00004647-200303000-00012

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Ando H, Macova M, Dou J, Saavedra JM (2005) Angiotensin II AT1 receptor blockade abolishes brain microvascular inflammation and heat shock protein responses in hypertensive rats. J Cereb Blood Flow Metab 25:878–886. doi:10.1038/sj.jcbfm.9600082

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Pavel J, Macova M, Yu ZX, Imboden H, Ge L, Nishioku T, Dou J, Delgiacco E, Saavedra JM (2006) AT1 receptor blockade regulates the local angiotensin II system in cerebral microvessels from spontaneously hypertensive rats. Stroke 37:1271–1276. doi:10.1161/01.STR.0000217404.64352.d7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Saavedra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benicky, J., Sánchez-Lemus, E., Pavel, J. et al. Anti-Inflammatory Effects of Angiotensin Receptor Blockers in the Brain and the Periphery. Cell Mol Neurobiol 29, 781–792 (2009). https://doi.org/10.1007/s10571-009-9368-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-009-9368-4

Keywords

Navigation