Skip to main content
Log in

Modulation of Programmed Forms of Cell Death by Intracoronary Levosimendan During Regional Myocardial Ischemia in Anesthetized Pigs

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Powerful mediators of programmed cell death, such as apoptosis and autophagy, can contribute to myocyte cell loss during pathological cardiac conditions. Levosimendan has been shown to exert beneficial hemodynamic effects in presence of global myocardial ischemia and heart failure through vasodilatation and increase of cardiac contractility. Recently, the intracoronary administration of a bolus levosimendan was found to exert favourable cardiac anti-stunning effects without lowering arterial pressure, which limits the use of levosimendan mainly in coronary artery disease. Here we tested whether the intracoronary administration of levosimendan can beneficially modulate programmed cell death in acute regional myocardial ischemia.

Methods

Acute regional myocardial ischemia was induced in 20 anaesthetized pigs and intracoronary levosimendan 15 min bolus administration was started 4 h afterwards. The effects of levosimendan on coronary blood flow and cardiac function were evaluated and myocardial biopsies were examined for criteria of autophagy and apoptosis.

Results

The administration of levosimendan caused a significant increase of coronary blood flow (p < 0.05) in absence of changes in cardiac function. Moreover, levosimendan prevented the down-regulation of the anti-apoptotic gene, Bcl-2, and the up-regulation of the apoptotic markers Bax and cytochrome c, which resulted in a reduced expression of TUNEL fragmented nuclei (p < 0.05). Furthermore, levosimendan maintained Beclin 1 at 4 h and potentiated LC3 II expression, these results being consistent with autophagy activation.

Conclusions

Such effects of intracoronary levosimendan bolus administration during regional myocardial ischemia indicate the occurrence of cardio-protection by modulation of programmed form of cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hamacher-Brady A, Brady NR, Gottlieb RA. The interplay between pro-death and pro-survival signaling pathways in myocardial ischemia/reperfusion injury: apoptosis meets autophagy. Cardiovasc Drugs Ther. 2006;20:445–62.

    Article  PubMed  CAS  Google Scholar 

  2. Baccino FM, Tessitore L, Cecchini G, et al. Control of cell protein catabolism in rat liver. Effects of starvation and administration of cycloheximide. Biochem J. 1982;206:395–405.

    PubMed  CAS  Google Scholar 

  3. Tessitore L, Tomasi C, Greco M. Fasting-induced apoptosis in rat liver is blocked by cycloheximide. Eur J Cell Biol. 1999;78:573–9.

    PubMed  CAS  Google Scholar 

  4. Buja ML, Vela D. Cardiomyocyte death and renewal in the normal and diseased heart. Cardiovasc Pathol. 2008;17:349–74.

    Article  PubMed  CAS  Google Scholar 

  5. Depre C, Vatner SF. Cardioprotection in stunned and hibernating myocardium. Heart Fail Rev. 2007;12:307–17.

    Article  PubMed  CAS  Google Scholar 

  6. Gustafsson AB, Gottlieb RA. Recycle or die: the role of autophagy in cardioprotection. J Mol Cell Cardiol. 2008;44:654–61.

    Article  PubMed  CAS  Google Scholar 

  7. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42.

    Article  PubMed  CAS  Google Scholar 

  8. Nishida K, Yamaguchi O, Otsu K. Crosstalk between autophagy and apoptosis in heart disease. Circ Res. 2008;103:343–51.

    Article  PubMed  CAS  Google Scholar 

  9. Scarabelli TM, Knight R, Stephanou A, Townsend P, Chen-Scarabelli C, Lawrence K, et al. Clinical implications of apoptosis in ischemic myocardium. J Curr Probl Cardiol. 2006;31:181–264.

    Article  Google Scholar 

  10. Marinovic J, Ljubkovic M, Stadnicka A, Bosnjak ZJ, Bienengraeber M. Role of sarcolemmal ATP-sensitive potassium channel in oxidative stress-induced apoptosis: mitochondrial connection. Am J Physiol Heart Circ Physiol. 2008;294:H1317–25.

    Article  PubMed  CAS  Google Scholar 

  11. Kaheinen P, Pollesello P, Levijoki J, Haikala H. Levosimendan increases diastolic coronary flow in isolated guinea-pig heart by opening ATP-sensitive potassium channels. J Cardiovasc Pharmacol. 2001;37:367–74.

    Article  PubMed  CAS  Google Scholar 

  12. Antoniades C, Tousoulis D, Koumallos N, Marinou K, Stefanadis C. Levosimendan: beyond its simple inotropic effect in heart failure. Pharmacol Ther. 2007;114:184–97.

    Article  PubMed  CAS  Google Scholar 

  13. Figgitt DP, Gillies PS, Goa KL. Levosimendan. Drugs. 2001;61:613–27.

    Article  PubMed  CAS  Google Scholar 

  14. Tassani P, Schad H, Heimisch W, et al. Effect of the calcium sensitizer levosimendan on the performance of ischaemic myocardium in anaesthetised pigs. Cardiovasc Drugs Ther. 2002;16:435–41.

    Article  PubMed  CAS  Google Scholar 

  15. Dickstein K, Cohen-Solal A, Filippatos G, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the task force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J. 2008;29:2388–442.

    Article  PubMed  CAS  Google Scholar 

  16. Grossini E, Caimmi PP, Molinari C, Teodori G, Vacca G. Hemodynamic effect of intracoronary administration of levosimendan in the anesthetized pig. J Cardiovasc Pharmacol. 2005;46:333–42.

    Article  PubMed  CAS  Google Scholar 

  17. Caimmi PP, Grossini E, Molinari C, Vacca G, Teodori G. Intracoronary infusion of levosimendan to treat postpericardiotomy heart failure. Ann Thorac Surg. 2006;82:e33–4.

    Article  PubMed  Google Scholar 

  18. Takahashi R, Endoh M. Dual regulation of myofilament Ca2+ sensitivity by levosimendan in normal and acidotic conditions in aequorin-loaded canine ventricular myocardium. Br J Pharmacol. 2005;145:1143–52.

    Article  PubMed  CAS  Google Scholar 

  19. Sorsa T, Pollesello P, Solaro RJ. The contractile apparatus as a target for drugs against heart failure: interaction of levosimendan, a calcium sensitiser, with cardiac troponin c. Mol Cell Biochem. 2004;266:87–107.

    Article  PubMed  CAS  Google Scholar 

  20. Linden RJ, Mary DASG. The preparation and maintenance of anaesthetized animals for the study of cardiovascular functions. In: Linden RJ, editor. Life sciences, techniques in cardiovascular physiology, vol. P3/1. Ireland: Elsevier Science; 1980. p. 1–22.

    Google Scholar 

  21. Grossini E, Molinari C, Mary DA, Uberti F, Caimmi PP, Vacca G. Intracoronary intermedin 1-47 augments cardiac perfusion and function in anesthetized pigs: role of calcitonin receptors and beta-adrenoreceptor-mediated nitric oxide release. J Appl Physiol. 2009;107:1037–50.

    Article  PubMed  CAS  Google Scholar 

  22. Dogne JM, Rolinb S, Peteinc M, Tchana-Satod V, Ghuysend A, Lambermontd B, et al. Characterization of an original model of myocardial infarction provoked by coronary artery thrombosis induced by ferric chloride in pig. Thromb Res. 2005;116:431–42.

    Article  PubMed  CAS  Google Scholar 

  23. Scorrano L, Oakes SA, Opferman JT, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science. 2003;300:135–9.

    Article  PubMed  CAS  Google Scholar 

  24. Bursch W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ. 2001;8:569–81.

    Article  PubMed  CAS  Google Scholar 

  25. Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ. 2005;12:1542–52.

    Article  PubMed  CAS  Google Scholar 

  26. Liang XH, Yu J, Brown K, Levine B. Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function. Cancer Res. 2001;61:3443–9.

    PubMed  CAS  Google Scholar 

  27. Kajstura J, Cheng W, Reiss K, et al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest. 1996;74:86–107.

    PubMed  CAS  Google Scholar 

  28. Anversa P, Cheng W, Liu Y, Leri A, Redaelli G, Kajstura J. Apoptosis and myocardial infarction. Basic Res Cardiol. 1998;93:8–12.

    Article  PubMed  Google Scholar 

  29. Liu P, Xu B, Cavalieri TA, Hock CE. Age-related difference in myocardial function and inflammation in a rat model of myocardial ischemia-reperfusion. Cardiovasc Res. 2002;56:443–53.

    Article  PubMed  CAS  Google Scholar 

  30. Quaini F, Cigola E, Sala R, et al. Apoptosis in the infarcted human heart. BAM. 1996;6:241–9.

    Google Scholar 

  31. Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy. 2007;3:542–5.

    PubMed  CAS  Google Scholar 

  32. Saeki K, Yuo A, Okuma E, et al. Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death Differ. 2000;7:1263–9.

    Article  PubMed  CAS  Google Scholar 

  33. Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122:927–39.

    Article  PubMed  CAS  Google Scholar 

  34. Yan L, Vatner DE, Kim SJ, et al. Autophagy in chronically ischemic myocardium. PNAS USA. 2005;102:13807–12.

    Article  PubMed  Google Scholar 

  35. Fishbein MC, Wang T, Matijasevic M, Hong L, Apple FS. Myocardial tissue troponins T and I. An immunohistochemical study in experimental models of myocardial ischemia. Cardiovasc Pathol. 2003;12:65–71.

    Article  PubMed  CAS  Google Scholar 

  36. Kivikko M, Lehtonen L, Wilson S. Colucci sustained hemodynamic effects of intravenous levosimendan. Circulation. 2003;107:81–6.

    Article  PubMed  CAS  Google Scholar 

  37. Jamali IN, Kersten JR, Pagel PS, Hettrick DA, Warltier DC. Intracoronary levosimendan enhances contractile function of stunned myocardium. Anesth Analg. 1997;85:23–9.

    Article  PubMed  CAS  Google Scholar 

  38. Das B, Sarkar C. Pharmacological preconditioning by levosimendan is mediated by inducible nitric oxide synthase and mitochondrial KATP channel activation in the in vivo anesthetized rabbit heart model. Vascul Pharmacol. 2007;47:248–56.

    Article  PubMed  CAS  Google Scholar 

  39. Shinbo A, Iijima T. Potentiation by nitric oxide of the ATP-sensitive K+ current induced by K+ channel openers in guinea-pig ventricular cells. Br J Pharmacol. 1997;120:1568–74.

    Article  PubMed  CAS  Google Scholar 

  40. Dorn GW, Diwan A. The rationale for cardiomyocyte resuscitation in myocardial salvage. J Mol Med. 2008;86:1085–95.

    Article  PubMed  Google Scholar 

  41. Maytin M, Colucci WS. Cardioprotection: a new paradigm in the acute management of acute heart failure syndromes. Am J Cardiol. 2005;96:26G–31G.

    Article  PubMed  CAS  Google Scholar 

  42. Parissis JT, Adamopoulos S, Antoniades C, et al. Effects of levosimendan on circulating pro-inflammatory cytokines and soluble apoptosis mediators in patients with decompensated advanced heart failure. Am J Cardiol. 2004;93:1309–12.

    Article  PubMed  CAS  Google Scholar 

  43. Endoh M. Changes in intracellular Ca2+ mobilization and Ca2+ sensitization as mechanisms of action of physiological interventions and inotropic agents in intact myocardial cells. Jpn Heart J. 1998;39:1–44.

    PubMed  CAS  Google Scholar 

  44. Oakes SA, Scorrano L, Opferman JT, et al. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the sarcoplasmic reticulum. PNAS USA. 2005;102:105–10.

    Article  PubMed  CAS  Google Scholar 

  45. Pan Z, Bhat MB, Nieminen AL, Ma J. Synergistic movements of Ca(2+) and Bax in cells undergoing apoptosis. J Biol Chem. 2001;276:32257–63.

    Article  PubMed  CAS  Google Scholar 

  46. Pollesello P, Papp Z. The cardioprotective effects of levosimendan: preclinical and clinical evidence. J Cardiovasc Pharmacol. 2007;50:257–63.

    Article  PubMed  CAS  Google Scholar 

  47. Kersten JR, Montgomery MW, Pagel PS, Warltier DC. Levosimendan, a new positive inotropic drug, decreases myocardial infarct size via activation of K(ATP) channels. Anesth Analg. 2000;90:5–11.

    Article  PubMed  CAS  Google Scholar 

  48. Sato S, Talukder MA, Sugawara H, Sawada H, Endoh M. Effects of levosimendan on myocardial contractility and Ca2+ transients in aequorin-loaded right-ventricular papillary muscles and indo-1-loaded single ventricular cardiomyocytes of the rabbit. J Mol Cell Cardiol. 1998;30:1115–28.

    Article  PubMed  CAS  Google Scholar 

  49. Gu Y, Wang C, Cohen A. Effect of IGF-1 on the balance between autophagy of dysfunctional mitochondria and apoptosis. FEBS Lett. 2004;577:357–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work supported by University of East Piedmont “A. Avogadro”, Ricerca Sanitaria Finalizzata Regione Piemonte 2007 (n° 2109), Angela Papa Ardissono.

The Authors of this paper have no conflict of interest in connection with the submitted article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Grossini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grossini, E., Caimmi, P.P., Platini, F. et al. Modulation of Programmed Forms of Cell Death by Intracoronary Levosimendan During Regional Myocardial Ischemia in Anesthetized Pigs. Cardiovasc Drugs Ther 24, 5–15 (2010). https://doi.org/10.1007/s10557-010-6217-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-010-6217-0

Key words

Navigation