Skip to main content

Advertisement

Log in

Human reduced folate carrier: translation of basic biology to cancer etiology and therapy

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

This review attempts to provide a comprehensive overview of the biology of the physiologically and pharmacologically important transport system termed the “reduced folate carrier” (RFC). The ubiquitously expressed RFC has unequivocally established itself as the major transport system in mammalian cells and tissues for a group of compounds including folate cofactors and classical antifolate therapeutics. Loss of RFC expression or function may have potentially profound pathophysiologic consequences including cancer. For chemotherapeutic antifolates used for cancer such as methotrexate or pemetrexed, synthesis of mutant RFCs or loss of RFC transcripts and proteins results in antifolate resistance due to incomplete inhibition of cellular enzyme targets and insufficient substrate for polyglutamate synthesis. Since RFC was first cloned in 1994, tremendous advances have been made in understanding the complex transcriptional and posttranscriptional regulation of RFC, in identifying structurally and functionally important domains and amino acids in the RFC molecule as a prelude to establishing the mechanism of transport, and in characterizing the molecular defects in RFC associated with loss of transport in antifolate resistant cell line models. Many of the insights gained from laboratory models of RFC portend opportunities for modulating carrier expression in drug resistant tumors, and for designing a new generation of agents with improved transport by RFC or substantially enhanced transport by other folate transporters over RFC. Many of the advances in the basic biology of RFC in cell line models are now being directly applied to human cancers in the clinical setting, most notably pediatric acute lymphoblastic leukemia and osteogenic sarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stokstad, E. L. R. (1990). Historical perspective on key advances in the biochemistry and physiology of folates. In M. F. Picciano, E. L. R. Stokstad, J. F. Greogory (Eds.), A folic acid metabolism in health and disease (pp. 1–21). New York: Wiley.

    Google Scholar 

  2. Sirotnak, F. M., & Tolner, B. (1999). Carrier mediated membrane transport of folates in mammalian cells. Annual Review of Nutrition, 19, 91–122.

    Article  PubMed  CAS  Google Scholar 

  3. Matherly, L. H., & Goldman, I. D. (2003). Membrane transport of folates. Vitamins and Hormones, 66, 403–456

    Article  PubMed  CAS  Google Scholar 

  4. Goldman, I. D., & Matherly, L. H. (1985). The cellular pharmacology of methotrexate. Pharmacology & Therapeutics, 28, 77–100.

    Article  CAS  Google Scholar 

  5. Jansen, G. (1999). Receptor- and carrier-mediated transport systems for folates and antifolates. Exploitation for folate chemotherapy and immunotherapy. In A. L. Jackman (Ed.), Anticancer development guide: Antifolate drugs in cancer therapy (pp. 293–321). Totowa, NJ: Humana Press.

    Google Scholar 

  6. Goldman, I. D., & Zhao, R. (2002). Molecular, biochemical, and cellular pharmacology of pemetrexed. Seminars in Oncology, 29, 3–17.

    PubMed  Google Scholar 

  7. Chiao, J. H., Roy, K., Tolner, B., Yang, C. H., & Sirotnak, F. M. (1997). RFC-1 gene expression regulates folate absorption in mouse small intestine. Journal of Biological Chemistry, 273, 11165–11170.

    Google Scholar 

  8. Kuman, C. K., Nguyen, T. T., Gonzales, F. B., & Said, H. M. (1998). Comparison of intestinal folate carrier clone expressed in IEC-6 cells and in Xenopus oocytes. American Journal of Physiology, 274, C289–C294.

    Google Scholar 

  9. Balamurugan, K., & Said, H. M. (2006). Role of reduced folate carrier in intestinal folate uptake. American Journal of Physiology. Cell Physiology, 291, C189–C193.

    Article  PubMed  CAS  Google Scholar 

  10. Horne, D. W., & Reed, K. A. (2001). Transport of methotrexate into PC-3 human prostate cancer cells. Archives of Biochemistry and Biophysics, 394, 39–44.

    Article  PubMed  CAS  Google Scholar 

  11. Qiu, A., Jansen, M., Sakaris, A., Min, S. H., Chattopadhyay, S., Tsai, E., et al. (2006). Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell, 127, 917–928.

    Article  PubMed  CAS  Google Scholar 

  12. Saier, M. H., Jr, Beatty, J. T., Goffeau, A., Harley, K. T., Heijne, W. H., Huang, S. C., et al. (1999). The major facilitator superfamily. Journal of Molecular Microbiology and Biotechnology, 1, 257–279.

    PubMed  CAS  Google Scholar 

  13. Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H. R., & Iwata, S. (2003). Structure and mechanism of the lactose permease of Escherichia coli. Science, 301, 610–615.

    Article  PubMed  CAS  Google Scholar 

  14. Huang, Y., Lemieux, M. J., Song, J., Auer, M., & Wang, D. N. (2003). Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science, 301, 616–620.

    Article  PubMed  CAS  Google Scholar 

  15. Yin, Y., He, X., Szewczyk, P., Nguyen, T., & Chang, G. (2006). Structure of the multidrug transporter EmrD from Escherichia coli. Science, 312, 741–744.

    Article  PubMed  CAS  Google Scholar 

  16. Goldman, I. D. (1971). The characteristics of the membrane transport of amethopterin and the naturally occurring folates. Annals of the New York Academy of Sciences, 186, 400–422.

    Article  PubMed  CAS  Google Scholar 

  17. Zhao, R., Gao, F., & Goldman, I. D. (2002). Reduced folate carrier transports thiamine monophosphate: An alternative route for thiamine delivery into mammalian cells. American Journal of Physiology. Cell Physiology, 282, C1512–C1517.

    PubMed  CAS  Google Scholar 

  18. Goldman, I. D. (1971). A model system for the study of heteroexchange diffusion: Methotrexate-folate interactions in L1210 leukemia and Ehrlich ascites tumor Cells. Biochimica et Biophysica Acta, 233, 624–634.

    PubMed  CAS  Google Scholar 

  19. Hooijberg, J. H., de Vries, N. A., Kaspers, G. J. L., Pieters, R., Jansen, G., & Peters, G. J. (2006). Multidrug resistance proteins and folate supplementation: Therapeutic implications for antifolates and other clases of drugs in cancer treatment. Cancer Chemotherapy and Pharmacology, 58, 1–12.

    Article  PubMed  CAS  Google Scholar 

  20. Assaraf, Y. G., & Goldman, I. D. (1997). Loss of folic acid exporter function with markedly augmented folate accumulation in lipophilic antifolate-resistant mammalian cells. Journal of Biological Chemistry, 272, 17460–17466.

    Article  PubMed  CAS  Google Scholar 

  21. Stark, M., Rothem, L., Jansen, G., Scheffer, G. L., Goldman, I. D., & Assaraf, Y. G. (2003). Antifolate resistance associated with loss of MRP1 expression and function in Chinese hamster ovary cells with markedly impaired export of folate and cholate. Molecular Pharmacology, 64, 220–227.

    Article  PubMed  CAS  Google Scholar 

  22. Assaraf, Y. G., Rothem, L., Hooijberg, J. H., Stark, M., Ifergan, I., Kathmann, I., et al. (2003). Loss of multidrug resistance protein 1 expression and folate efflux activity results in a highly concentrative folate transport in human leukemia cells. Journal of Biological Chemistry, 278, 6680–6686.

    Article  PubMed  CAS  Google Scholar 

  23. Ifergan, I., Shafran, A., Jansen, G., Hooijberg, J. H., Scheffer, G. L., & Assaraf, Y. G. (2004). Folate deprivation results in the loss of breast cancer resistance protein (BCRP/ABCG2) expression. A role for BCRP in cellular folate homeostasis. Journal of Biological Chemistry, 279, 25527–25534.

    Article  PubMed  CAS  Google Scholar 

  24. Ifergan, I., Jansen, G., & Assaraf, Y. G. (2005). Cytoplasmic confinement of breast cancer resistance protein (BCRP/ABCG2) as a novel mechanism of adaptation to short-term folate deprivation. Molecular Pharmacology, 67, 1349–1359.

    Article  PubMed  CAS  Google Scholar 

  25. Goldman, I. D., Lichtenstein, N. S., & Oliverio, V. T. (1968). Carrier-mediated transport of the folic acid analogue methotrexate, in the L1210 leukemia cell. Journal of Biological Chemistry, 243, 5007–5017.

    PubMed  CAS  Google Scholar 

  26. Sirotnak, F. M., Kurita, S., & Hutchison, D. J. (1968). On the nature of a transport alteration determining resistance to amethopterin in the L1210 leukemia. Cancer Research, 28, 75–80.

    PubMed  CAS  Google Scholar 

  27. Underhill, T. M., & Flintoff, W. F. (1989). Mutant Chinese hamster ovary cells with defective methotrexate uptake are distinguishable by reversion analysis. Somatic Cell and Molecular Genetics, 15, 49–59.

    Article  PubMed  CAS  Google Scholar 

  28. Underhill, T. M., Williams, F. M. R., Murray, R. C., & Flintoff, W. F. (1992). Molecular cloning of a gene involved in methotrexate uptake by DNA-mediated gene transfer. Somatic Cell and Molecular Genetics, 18, 337–349.

    Article  PubMed  CAS  Google Scholar 

  29. Dixon, K. H., Lanpher, B. C., Chiu, J., Kelley, K., & Cowan, K. H. (1994). Novel cDNA restores reduced folate carrier activity and methotrexate sensitivity to transport deficient cells. Journal of Biological Chemistry, 269, 17–20.

    PubMed  CAS  Google Scholar 

  30. Williams, F. M. R., Murray, R. C., Underhill, T. M., & Flintoff, W. F. (1994). Isolation of a hamster cDNA clone coding for a function involved in methotrexate uptake. Journal of Biological Chemistry, 269, 5810–5816.

    PubMed  CAS  Google Scholar 

  31. Moscow, J. A., Gong, M. K., He, R., Sgagias, M. K., Dixon, K. H., Anzick, S. L., et al. (1995). Isolation of a gene encoding a human reduced folate carrier (RFC1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells. Cancer Research, 55, 3790–3794.

    PubMed  CAS  Google Scholar 

  32. Prasad, P. D., Ramamoorthy, S., Leibach, F. H., & Ganapathy, V. (1995). Molecular cloning of the human placental folate transporter. Biochemical and Biophysical Research Communications, 206, 681–687.

    Article  PubMed  CAS  Google Scholar 

  33. Williams, M. R., & Flintoff, W. F. (1995). Isolation of a human CDNA that complements a mutant hamster cell defective in methotrexate uptake. Journal of Biological Chemistry, 270, 2987–2992.

    Article  PubMed  CAS  Google Scholar 

  34. Wong, S. C., Proefke, S. A., Bhushan, A., & Matherly, L. H. (1995). Isolation of human cDNAs that restore methotrexate sensitivity and reduced folate carrier activity in methotrexate transport-defective Chinese hamster ovary cells. Journal of Biological Chemistry, 270, 17468–17475.

    Article  PubMed  CAS  Google Scholar 

  35. Brigle, K. E., Spinella, M. J., Sierra, E. E., & Goldman, I. D. (1995). Characterization of a mutation in the reduced folate carrier in a transport defective L1210 murine leukemia cell line. Journal of Biological Chemistry, 270, 22974–22979.

    Article  PubMed  CAS  Google Scholar 

  36. Wong, S. C., McQuade, R., Proefke, S. A., Bhushan, A., & Matherly, L. H. (1997). Human K562 transfectants expressing high levels of reduced folate carrier but exhibiting low transport activity. Biochemical Pharmacology, 53, 199–206.

    Article  PubMed  CAS  Google Scholar 

  37. Wong, S. C., Zhang, L., Proefke, S. A., & Matherly, L. H. (1998). Effects of the loss of capacity for N-glycosylation on the transport activity and cellular localization of the human reduced folate carrier. Biochimica et Biophysica Acta, 1375, 6–12.

    PubMed  CAS  Google Scholar 

  38. Wong, S. C., Zhang, L., Witt, T. L., Proefke, S. A., Bhushan, A., & Matherly, L. H. (1999). Impaired membrane transport in methotrexate-resistant CCRF-CEM cells involves early translation termination and increased turnover of a mutant reduced folate carrier. Journal of Biological Chemistry, 274, 10388–10394.

    Article  PubMed  CAS  Google Scholar 

  39. Matherly, L. H., Czajkowski, C. A., & Angeles, S. M. (1991). Identification of a highly glycosylated methotrexate membrane carrier in K562 human erythroleukemia cells upregulated for tetrahydrofolate and methotrexate transport. Cancer Research, 51, 4320–4326.

    Google Scholar 

  40. Freisheim, J. H., Ratnam, M., McAlinden, T. P., Prasad, K. M. R., Williams, F. E., Westerhof, G. R., et al. (1992). Molecular events in the membrane transport of methotrexate in human CCRF-CEM leukemia cell lines. Advances in Enzyme Regulation, 32, 17–31.

    Article  PubMed  CAS  Google Scholar 

  41. Ferguson, P. L., & Flintoff, W. F. (1999). Topological and functional analysis of the human reduced folate carrier by hemagglutinin epitope insertion. Journal of Biological Chemistry, 274, 16269–16278.

    Article  PubMed  CAS  Google Scholar 

  42. Liu, X., & Matherly, L. H. (2002). Analysis of membrane topology of the human reduced folate carrier protein by hemagglutinin epitope insertion and scanning glycosylation insertion mutagenesis. Biochimica et Biophysica Acta, 1564, 333–342.

    PubMed  CAS  Google Scholar 

  43. Cao, W., & Matherly, L. H. (2004) Analysis of the membrane topology for transmembrane domains 7–12 of the human reduced folate carrier by scanning cysteine accessibility methods. Biochemical Journal, 378, 201–206.

    Article  PubMed  CAS  Google Scholar 

  44. Whetstine, J. R., Flatley, R. M., & Matherly, L. H. (2002). The human reduced folate carrier gene is ubiquitously and differentially expressed in normal human tissues: Identification of seven non-coding exons and characterization of a novel promoter. Biochemical Journal, 367, 629–640.

    Article  PubMed  CAS  Google Scholar 

  45. Gong, M., Cowan, K. H., Gudas, J., & Moscow, J. A. (1999). Isolation and characterization of genomic sequences involved in the regulation of the human reduced folate carrier gene (RFC1). Gene, 233, 21–31.

    Article  PubMed  CAS  Google Scholar 

  46. Liu, M., Ge, Y., Cabelof, D. C., Aboukameel, A., Heydari, A. R., Mohammad, R., et al. (2005). Structure and regulation of the murine reduced folate carrier gene: Identification of 4 non-coding exons and promoters and regulation by dietary folates. Journal of Biological Chemistry, 280, 5588–5597.

    Article  PubMed  CAS  Google Scholar 

  47. Wang, Y., Zhao, R., Russell, R. G., & Goldman, I. D. (2001). Localization of the murine reduced folate carrier as assessed by immunohistochemical analysis. Biochimica et Biophysica Acta, 1513, 49–54.

    PubMed  CAS  Google Scholar 

  48. Sweiry, J. H., & Yudlievich, D. L. (1985). Transport of folates at maternal and fetal sides of the placenta. lack of inhibition by methotrexate. Biochimica et Biophysica Acta, 821, 497–501.

    PubMed  CAS  Google Scholar 

  49. Kneuer, C., Honscha, K. U., & Honscha, W. (2005). Rat reduced folate carrier-1 is localized basolaterally in MDCK kidney epithelial cells and contributes to the secretory transport. Cell & Tissue Research, 320, 517–524.

    Article  CAS  Google Scholar 

  50. Zhao, R., Russell, R. G., Wang, Y., Liu, L., Gao, F., Kneitz, B., et al. (2001). Rescue of embryonic lethality in reduced folate carrier-deficient mice by maternal folic acid supplementation reveals early neonatal failure of hematopoietic organs. Journal of Biological Chemistry, 276, 10224–10228.

    PubMed  CAS  Google Scholar 

  51. Said, H. M., Chatterjee, N., Haq, R. U., Subramanian, V. S., Ortiz, A., Matherly, L. H., et al. (2000). Adaptive regulation of intestinal folate uptake: Effect of dietary folate deficiency. American Journal of Physiology. Cell Physiology, 279(6), C1889–C1895.

    PubMed  CAS  Google Scholar 

  52. Doll, R. (1992). The lessons of life: Keynote address to the nutrition and cancer conference. Cancer Research, 52, 2024s–2029s.

    PubMed  CAS  Google Scholar 

  53. Kim, Y. I. (2006). Folate: A magic bullet or a double edged sword for colorectal cancer prevention? Gut, 55, 1387–1389.

    Article  PubMed  CAS  Google Scholar 

  54. Lucock, M., & Yates, Z. (2005). Folic acid—vitamin and panacea or genetic time bomb? Nature Reviews, Genetics, 6, 235–240.

    Article  CAS  Google Scholar 

  55. Rong, N., Selhub, J., Goldman, B. R., & Rosenberg, I. H. (1991). Bacterially synthesized folate in rat large intestine is incorporated into host tissue folate polyglutamates. Journal of Nutrition, 121, 1955–1959.

    PubMed  CAS  Google Scholar 

  56. Dudeja, P. K., Torania, S. A., & Said, H. M. (1997). Evidence for the existence of a carrier-mediated folate uptake mechanism in human colonic luminal membranes. American Journal of Physiology, 272, G1408–G1415.

    PubMed  CAS  Google Scholar 

  57. Choi, S. W., & Mason, J. B. (2000). Folate and carcinogenesis: An integrated scheme. Journal of Nutrition, 130, 129–132.

    PubMed  CAS  Google Scholar 

  58. Blount, B. C., Mack, M. M., Wehr, C. M., MacGregor, J. T., Hiatt, R. A., Wang, G., et al. (1997). Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: Implications for cancer and neuronal damage. Proceedings of the National Academy of Sciences of the United States of America, 94, 3290–3295.

    Article  PubMed  CAS  Google Scholar 

  59. Kim, Y. I. (1999). Folate and carcinogenesis: Evidence, mechanisms, and implications. Journal of Nutritional Biochemistry, 10, 66–88.

    Article  PubMed  CAS  Google Scholar 

  60. Ries, L. A. G., Eisner, M. P., Kosary, C. L., Hankey, B. F., Miller, B. A., Clegg, L., Mariotto, A., Feuer, E. J., & Edwards, N. K. (Eds.), SEER Cancer Statistics Review. 1975–2001, National Cancer Institute, Bethesda, MD, http://seer.cancer.gov/csr/1975_2001/2004.

  61. Lucock, M. (2000). Folic acid: Nutritional biochemistry, molecular biology, and role in disease processes. Molecular Genetics and Metabolism, 71, 121–138.

    Article  PubMed  CAS  Google Scholar 

  62. Giovannucci, E., Rimm, E. B., Ascherio, A., Stampfer, M. J., Colditz, G. A., & Willett, W. C. (1995). Alcohol, low-methionine-low-folate diets, and risk of colon cancer in men. Journal of the National Cancer Institute, 87, 265–273.

    Article  PubMed  CAS  Google Scholar 

  63. Kim, Y. I., Salomon, R. N., Graeme-Cook, F., Choi, S. W., Smith, D. E., Dallal, G. E., et al. (1996). Dietary folate protects against the development of macroscopic colonic neoplasia in a dose responsive manner in rats. Gut, 39, 732–740.

    PubMed  CAS  Google Scholar 

  64. Sibani, S., Melnyk, S., Pogribny, I. P., Wang, W., Hiou-Tim, F., Deng, L., et al. (2002). Studies of methionine cycle intermediates (SAM, SAH), DNA methylation and the impact of folate deficiency on tumor numbers in Min mice. Carcinogenesis, 23, 61–65.

    Article  PubMed  CAS  Google Scholar 

  65. Ma, D. W., Finnell, R. H., Davidson, L. A., Callaway, E. S., Spiegelstein, O., Piedrahita, J. A., et al. (2005). Folate transport gene inactivation in mice increases sensitivity to colon carcinogenesis. Cancer Research, 65, 887–897.

    PubMed  CAS  Google Scholar 

  66. Lawrance, A. K., Deng, L., Brody, L. C., Finnell, R. H., Shane, B., & Rozen, R. (2007). Genetic and nutritional deficiencies in folate metabolism influence tumorigenicity in Apc(min/+) mice. Journal of Nutritional Biochemistry (in press).

  67. Tolner, B., Roy, K., & Sirotnak, F. M. (1997). Organization, structure and alternate splicing of the murine RFC-1 gene encoding a folate transporter. Gene, 189, 1–7.

    Article  PubMed  CAS  Google Scholar 

  68. Tolner, B., Roy, K., & Sirotnak, F. M. (1998). Structural analysis of the human RFC-1 gene encoding a folate transporter reveals multiple promoters and alternatively spliced transcripts with 5′ end heterogeneity. Gene, 211, 331–341.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang, L., Wong, S. C., & Matherly, L. H. (1998). Transcript heterogeneity of the human reduced folate carrier results from the use of multiple promoters and variable splicing of alternative upstream exons. Biochemical Journal, 332, 773–780.

    PubMed  CAS  Google Scholar 

  70. Zhang, L., Wong, S. C., & Matherly, L. H. (1998). Structure and organization of the human reduced folate carrier gene. Biochimica et Biophysica Acta, 1442, 389–393.

    PubMed  CAS  Google Scholar 

  71. Williams, F. M. R., & Flintoff, W. F. (1998). Structural organization of the human reduced folate carrier gene: Evidence for 5′ heterogeneity in lymphoblast mRNA. Somatic Cell and Molecular Genetics, 24, 143–156.

    Article  PubMed  CAS  Google Scholar 

  72. Murray, R. C., Williams, F. M., & Flintoff, W. F. (1996). Structural organization of the reduced folate carrier gene in Chinese hamster ovary cells. Journal of Biological Chemistry, 271, 19174–19179.

    Article  PubMed  CAS  Google Scholar 

  73. Synold, T. W., Relling, M. V., Boyett, J. M., Rivera, G. K., Sandlund, J. T., Mahmoud, H., et al. (1994). Blast cell methotrexate-polyglutamate accumulation in vivo differs by lineage, ploidy, and methotrexate dose in acute lymphoblastic leukemia. Journal of Clinical Investigation, 94, 1996–2001.

    PubMed  CAS  Google Scholar 

  74. Whitehead, V. M., Vuchich, M. J., Lauer, S. J., Mahoney, D., Carroll, A. J., Shuster, J. J., et al. (1992). Accumulation of high levels of methotrexate polyglutamates in lymphoblasts from children with hyperdiploid (greater than 50 chromosomes) B-lineage acute lymphoblastic leukemia: A Pediatric Oncology Group study. Blood, 80, 1316–1323.

    PubMed  CAS  Google Scholar 

  75. Peeters, M., & Poon, A. (1987). Down syndrome and leukemia: Unusual clinical aspects and unexpected methotrexate sensitivity. European Journal of Pediatrics, 146, 416–422.

    Article  PubMed  CAS  Google Scholar 

  76. Flatley, R. M., Payton, S. G., Taub, J. W., & Matherly, L. H. (2004). Primary acute lymphoblastic leukemia cells use a novel promoter and 5′non-coding exon for the human reduced folate carrier that encodes a modified carrier translated from an upstream translational start. Clinical Cancer Research, 10, 5111–5122.

    Article  PubMed  CAS  Google Scholar 

  77. Payton, S. G., Haska, C. L., Flatley, R. M., & Matherly, L. H. (2006). Effects of 5' untranslated region diversity on the posttranscriptional regulation of the human reduced folate carrier. Biochimica et Biophysica Acta (in press).

  78. Payton, S. G., Whetstine, J. R., Ge, Y., & Matherly, L. H. (2005). Transcriptional regulation of the human reduced folate carrier promoter C: Synergistic transactivation by Sp1 and E/EBP beta and identificatiosn of a downstream repressor. Biochimica et Biophysica Acta, 1727, 45–57.

    PubMed  CAS  Google Scholar 

  79. Payton, S. G., Liu, M., Ge, Y., & Matherly, L. H. (2005). Transcriptional regulation of the human reduced folate carrier A1/A2 promoter: Identification of critical roles for the USF and GATA families of transcription factors. Biochimica et Biophysica Acta, 1731, 115–124.

    PubMed  CAS  Google Scholar 

  80. Whetstine, J. R., & Matherly, L. H. (2001). The basal promoters for the human reduced folate carrier gene are regulated by a GC-box and a CAMP-response element/AP-1-like element. Basis for tissue-specific gene expression. Journal of Biological Chemistry, 276, 6350–6358.

    Article  PubMed  CAS  Google Scholar 

  81. Whetstine, J. R., Witt, T. L., & Matherly, L. H. (2002). The human reduced folate carrier gene is regulated by the AP2 and Sp1 transcription factor families and a functional 61 base pair polymorphism. Journal of Biological Chemistry, 277, 43873–43880.

    Article  PubMed  CAS  Google Scholar 

  82. Liu, M., Whetstine, J. R., Payton, S. G., Ge, Y., Flatley, R. M., & Matherly, L. H. (2004). Roles of USF, Ikaros, and Sp proteins in the transcriptional regulation of the human reduced folate carrier B promoter. Biochemical Journal, 383, 249–257.

    Article  PubMed  CAS  Google Scholar 

  83. Worm, J., Kirkin, A. F., Dzhandzhugazyan, K. N., & Guldberg, P. (2001). Methylation-dependent silencing of the reduced folate carrier gene in inherently methotrexate-resistant human breast cancer cells. Journal of Biological Chemistry, 276, 39990–40000.

    Article  PubMed  CAS  Google Scholar 

  84. Ferreri, A. J., Dell’Oro, S., Capello, D., Ponzoni, M., Iuzzolino, P., Rossi, D., et al. (2004). Aberrant methylation in the promoter region of the reduced folate carrier gene is a potential mechanism of resistance to methotrexate in primary central nervous system lymphomas. British Journal of Haematology, 126, 657–664.

    Article  PubMed  CAS  Google Scholar 

  85. Rothem, L., Stark, M., Kaurman, Y., Mayo, L., & Assaraf, Y. G. (2004). Reduced folate carrier silencing in multiple antifolate-resistant tumor cell lines is due to a simultaneous loss of function of multiple transcription factors but not promoter methylation. Journal of Biological Chemistry, 279, 374–384.

    Article  PubMed  CAS  Google Scholar 

  86. Liu, M., Ge, Y., Payton, S. G., Aboukameel, A., Buck, S., Flatley R. F., et al. (2006). Transcriptional regulation of the human reduced folate carrier in childhood acute lymphoblastic leukemia cells. Clinical Cancer Research, 12, 608–616.

    Article  PubMed  CAS  Google Scholar 

  87. McGuire, J. J., Haile, W. H., & Yeh, C. C. (2006). 5-amino-4-imidazolecarboxamide riboside potentiates both transport of reduced folates and antifolates by the human reduced folate carrier and their subsequent metabolism. Cancer Research, 66, 3836–3844.

    Article  PubMed  CAS  Google Scholar 

  88. Monahan, B. P., & Allegra, C. J. (2001). Antifolates. In B. A. Chabner, & D. L. Longo (Eds.), Cancer chemotherapy and biotherapy, 4th ed. (pp. 109–148). Philadelphia, PA: Lippincott-Raven.

    Google Scholar 

  89. Chu, E., Callender, M. A., Farrell, M. P., & Schmitz, J. C. (2003). Thymidylate synthase inhibitors as anticancer agents: From bench to bedside. Cancer Chemotherapy and Pharmacology, 52(Suppl 1), S80–S89.

    Article  PubMed  CAS  Google Scholar 

  90. Hazarika, M., White, R. M., Johnson, J. R., & Pazdur, R. (2004). FDA drug approval summaries: Pemetrexed (Alimta). Oncologist, 9, 482–488.

    Article  PubMed  CAS  Google Scholar 

  91. Cohen, M. H., Johnson, J. R., Wang, Y. C., Sridhara, R., & Pazdur, R. (2005). FDA drug approval: Pemetrexed for injection (Alimta) for the treatment of non-small cell lung cancer. Oncologist, 10, 363–368.

    Article  PubMed  CAS  Google Scholar 

  92. Fischer, G. A. (1962). Detective transport of amethopterin (methotrexate) as a mechanism of resistance to the antimetabolite in L5178Y leukemic cells. Biochemical Pharmacology, 11, 1233–1234.

    Article  PubMed  CAS  Google Scholar 

  93. Zhao, R., & Goldman, I. D. (2003). Resistance to antifolates. Oncogene, 22, 7431–7457.

    Article  PubMed  CAS  Google Scholar 

  94. Schuetz, J. D., Matherly, L. H., Westin, E. H., & Goldman, I. D. (1988). Evidence for a functional defect in the translocation of the methotrexate transport carrier in a methotrexate-resistant murine L1210 leukemia cell line. Journal of Biological Chemistry, 263, 9840–9847.

    PubMed  CAS  Google Scholar 

  95. Zhao, R., Assaraf, Y. G., & Goldman, I. D. (1998). A mutated murine reduced folate carrier (RFC1) with increased affinity for folic acid, decreased affinity for methotrexate, and an obligatory anion requirement for transport function. Journal of Biological Chemistry, 273, 19065–19071.

    Article  PubMed  CAS  Google Scholar 

  96. Zhao, R., Assaraf, Y. G., & Goldman, I. D. (1998). A reduced carrier mutation produces substrate-dependent alterations in carrier mobility in murine leukemia cells and methotrexate resistance with conservation of growth in 5-formyltetrahydrofolate. Journal of Biological Chemistry, 373, 7873–7879.

    Article  Google Scholar 

  97. Zhao, R., Gao, F., & Goldman, I. D. (1999). Discrimination among reduced folates and methotrexate as transport substrates by a phenylalanine substitution for serine within the predicted eighth transmembrane domain of the reduced folate carrier. Biochemical Pharmacology, 58, 1615–1624.

    Article  PubMed  CAS  Google Scholar 

  98. Roy, K., Tolner, B., Chiao, J. H., & Sirotnak, F. M. (1998). A single amino acid difference within the folate transporter encoded by the murine RFC-1 gene selectively alters its interaction with folate analogues. Implications for intrinsic antifolate resistance and directional orientation of the transporter within the plasma membrane of tumor cells. Journal of Biological Chemistry, 273, 2526–2531.

    Article  PubMed  CAS  Google Scholar 

  99. Jansen, G., Mauritz, R., Drori, S., Sprecher, H., Kathmann, I., Bunni, M., et al. (1998). A structurally altered human reduced folate carrier with increased folic acid transport mediates a novel mechanism of antifolate resistance. Journal of Biological Chemistry, 273, 30189–30198.

    Article  PubMed  CAS  Google Scholar 

  100. Gong, M., Yess, J., Connolly, T., Ivy, S. P., Ohnuma, T., Cowan, K. H., et al. (1997). Molecular mechanism of antifolate transport-deficiency in a methotrexate-resistant MOLT-3 human leukemia cell line. Blood, 89, 2494–2499.

    PubMed  CAS  Google Scholar 

  101. Sadlish, H., Murray, R. C., Williams, F. M., & Flintoff, W. F. (2000). Mutations in the reduced-folate carrier affect protein localization and stability. Biochemical Journal, 346, 509–518.

    Article  PubMed  CAS  Google Scholar 

  102. Rothem, L., Ifergan, I., Kaufman, Y., Priest, D. G., Jansen, G., & Assaraf, Y. G. (2002). Resistance to multiple novel antifolates is mediated via defective drug transport resulting from clustered mutations in the reduced folate carrier gene in human leukemia cell lines. Biochemical Journal, 367, 741–750.

    Article  PubMed  CAS  Google Scholar 

  103. Rothem, L., Aronheim, A., & Assaraf, Y. G. (2003). Alterations in the expression of transcription factors and the reduced folate carrier as a novel mechanism of antifolate resistance in human leukemia cells. Journal of Biological Chemistry, 278, 8935–8941.

    Article  PubMed  CAS  Google Scholar 

  104. Drori, S., Jansen, G., Mauritz, R., Peters, G. J., & Assaraf, Y. G. (2000). Clustering of mutations in the first transmembrane domain of the human reduced folate carrier in GW1843U89-resistant leukemia cells with impaired antifolate transport and augmented folate uptake. Journal of Biological Chemistry, 275, 30855–30863.

    Article  PubMed  CAS  Google Scholar 

  105. Sirotnak, F. M., Moccio, D. M., Kelleher, L. E., & Goutas, L. J. (1981). Relative frequency and kinetic properties of transport-defective phenotypes among methotrexate resistant L1210 clonal cell lines derived in vivo. Cancer Research, 41, 4442–4452.

    Google Scholar 

  106. Zhao, R., Gao, F., Babani, S., & Goldman, I. D. (2000). Sensitivity to 5,10-dideazatetrahydrofolate is fully conserved in a murine leukemia cell line highly resistant to methotrexate due to impaired transport mediated by the reduced folate carrier. Clinical Cancer Research, 6, 3304–3311.

    PubMed  CAS  Google Scholar 

  107. Gifford, A. J., Haber, M., Witt, T. L., Whetstine, J. R., Taub, J. W., Matherly, L. H., et al. (2002). Role of the E45K reduced folate carrier gene mutation in methotrexate resistance in human leukemia cells. Leukemia, 16, 2379–2387.

    Article  PubMed  CAS  Google Scholar 

  108. Tse, A., Brigle, K., Taylor, S. M., & Moran, R. G. (1998). Mutations in the reduced folate carrier gene which confer dominant resistance to 5,10-dideazatetrahydrofolate. Journal of Biological Chemistry, 273, 25953–25960.

    Article  PubMed  CAS  Google Scholar 

  109. Ding, B. C., Witt, T. L., Hukku, B., Heng, H., Zhang, L., & Matherly, L. H. (2001). Deletions and translocations of the reduced folate carrier gene are associate with profound loss of gene expression in methotrexate resistant K562 human erythroleukemia cells. Biochemical Pharmacology, 61, 665–675.

    Article  PubMed  CAS  Google Scholar 

  110. Kaufman, Y., Ifergan, I., Rothem, L., Jansen, G., & Assaraf, Y. G. (2006). Coexistence of multiple mechanism of PT523 resistance in human leukemia cells harboring 3 reduced folate carrier alleles: Transcriptional silencing, inactivating mutations, and allele loss. Blood, 107, 3288–3294.

    Article  PubMed  CAS  Google Scholar 

  111. Stark, M., & Assaraf, Y. G. (2006). Loss of Sp1 function via inhibitory phosphorylation in antifolate-resistant human leukemia cells with down-regulation of the reduced folate carrier. Blood, 107, 708–715.

    Article  PubMed  CAS  Google Scholar 

  112. Byers, P. H. (2002). Killing the messenger: New insights into nonsense-mediated mRNA decay. Journal of Clinical Investigation, 109, 3–6.

    Article  PubMed  CAS  Google Scholar 

  113. Sharina, I. G., Zhao, R., Wang, Y., Babani, S., & Goldman, I. D. (2001). Mutational analysis of the functional role of conserved Arginine and Lysine residues in transmembrane domains of the murine reduced folate carrier. Molecular Pharmacology, 59, 1022–1028.

    PubMed  CAS  Google Scholar 

  114. Sadlish, H., Williams, F. M., & Flintoff, W. F. (2002). Functional role of arginine 373 in substrate translocation by the reduced folate carrier. Journal of Biological Chemistry, 277, 42105–42112.

    Article  PubMed  CAS  Google Scholar 

  115. Liu, X. Y., & Matherly, L. H. (2001). Functional interactions between Arginine-133 and Aspartate-88 in the human reduced folate carrier: Evidence for a charge-pair association. Biochemical Journal, 358, 511–516.

    Article  PubMed  CAS  Google Scholar 

  116. Sahin-Toth, M., Dunten, R. L., Gonzalez, A., & Kaback, H. R. (1992). Functional interactions between putative intramembrane charged residues in the lactose permease of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 89, 10547–10551.

    Article  PubMed  CAS  Google Scholar 

  117. Gupta, S. S., DeWitt, N. D., Allen, K. E., & Slayman, C. W. (1998). Evidence for a salt bridge between transmembrane segments 5 and 6 of the yeast plasma-membrane H+-ATPase. Journal of Biological Chemistry, 273, 34328–34334.

    Article  PubMed  CAS  Google Scholar 

  118. Zhao, R., Wang, Y., Gao, F., & Goldman, I. D. (2003). Residues 45 and 404 in the murine reduced folate carrier may interact to alter carrier binding and mobility. Biochimica et Biophysica Acta, 1613, 49–56.

    PubMed  CAS  Google Scholar 

  119. Witt, T. L., & Matherly, L. H. (2002). Identification of lysine-411 in the human reduced folate carrier as an important determinant of substrate selectivity and carrier function by systematic site-directed mutagenesis. Biochimica et Biophysica Acta, 1567, 56–62.

    PubMed  CAS  Google Scholar 

  120. Sadlish, H., Williams, F. M., & Flintoff, W. F. (2002). Cytoplasmic domains of the reduced folate carrier are essential for trafficking, but not function. Biochemical Journal, 364, 777–786.

    Article  PubMed  CAS  Google Scholar 

  121. Marchant, J. S., Subramanian, V. S., Parker, I., & Said, H. M. (2002). Intracellular trafficking and membrane targeting mechanisms of the human reduced folate carrier in mammalian epithelial cells. Journal of Biological Chemistry, 277, 33325–33333.

    Article  PubMed  CAS  Google Scholar 

  122. Sharina, I. G., Zhao, R., Wang, Y., Babani, S., & Goldman, I. D. (2002). Role of the C-terminus and the long cytoplasmic loop in reduced folate carrier expression and function. Biochemical Pharmacology, 63, 1717–1724.

    Article  PubMed  CAS  Google Scholar 

  123. Liu, X. Y., Witt, T. L., & Matherly, L. H. (2003). Restoration of high level transport activity by human reduced folate carrier/ThTr1 chimeric transporters: Role of the transmembrane domain 6/7 linker region in reduced folate carrier function. Biochemical Journal, 369, 31–37.

    Article  PubMed  CAS  Google Scholar 

  124. Witt, T. L., Stapels, S., & Matherly, L. H. (2004). Restoration of transport activity by co-expression of human reduced folate carrier half molecules in transport impaired K562 cells: Localization of a substrate binding domain to transmembrane domains 7–12. Journal of Biological Chemistry, 279, 46755–46763.

    Article  PubMed  CAS  Google Scholar 

  125. Hou, Z., Stapels, S. E., Haska, C. L., & Matherly, L. H. (2005). Localization of a substrate binding domain of the human reduced folate carrier to transmembrane domain 11 by radioaffinity labeling and cysteine-substituted accessibility methods. Journal of Biological Chemistry, 280, 36206–36213.

    Article  PubMed  CAS  Google Scholar 

  126. Hou, Z., Ye, J., Haska, C. L., & Matherly, L. H. (2006). Transmembrane domains 4, 5, 7, 8, and 10 of the human reduced folate carrier are important structural or functional components of the transmembrane channel for folate substrates. Journal of Biological Chemistry, 281, 33588–33596.

    Article  PubMed  CAS  Google Scholar 

  127. Cao, W., & Matherly, L. H. (2003). Characterization of a cysteine-less human reduced folate carrier: Localization of a substrate binding domain by cysteine scanning mutagenesis and cysteine accessibility methods. Biochemical Journal, 374, 27–36.

    Article  PubMed  CAS  Google Scholar 

  128. Flintoff, W. F., Williams, F. M., & Sadlish, H. (2003). The region between transmembrane domains 1 and 2 of the reduced folate carrier forms part of the substrate-binding pocket. Journal of Biological Chemistry, 278, 40867–40876.

    Article  PubMed  CAS  Google Scholar 

  129. Zhang, L., Taub, J. W., Williamson, M., Wong, S. C., Hukku, B., Pullen, J., et al. (1998). Reduced folate carrier gene expression in childhood acute lymphoblastic leukemia: Relationship to immunophenotype and ploidy. Clinical Cancer Research, 4, 2169–2177.

    PubMed  CAS  Google Scholar 

  130. Trippett, T., Schlemmer, S., Elisseyeff, Y., Goker, E., Wachter, M., Steinherz, P., et al. (1992). Defective transport as a mechanism of acquired resistance to methotrexate in patients with acute lymphocytic leukemia. Blood, 80, 1158–1162.

    PubMed  CAS  Google Scholar 

  131. Gorlick, R., Goker, E., Trippett, T., Steinherz, P., Elisseyeff, Y., Mazumdar, M., et al. (1997). Defective transport is a common mechanism of acquired methotrexate resistance in acute lymphocytic leukemia and is associated with decreased reduced folate carrier expression. Blood, 89, 1013–1018.

    PubMed  CAS  Google Scholar 

  132. Matherly, L. H., Taub, J. W., Ravindranath, Y., Proefke, S. A., Wong, S. C., Gimotty, P., et al. (1995). Elevated dihydrofolate reductase and impaired methotrexate transport as elements in methotrexate resistance in childhood acute lymphoblastic leukemia. Blood, 85, 500–509.

    PubMed  CAS  Google Scholar 

  133. Matherly, L. H., Taub, J. W., Wong, S. C., Simpson, P. M., Ekizian, R., Buck, S., et al. (1997). Increased frequency of expression of elevated dihydrofolate reductase in T-cell versus B-precursor acute lymphoblastic leukemia in children. Blood, 90, 578–589.

    PubMed  CAS  Google Scholar 

  134. Rots, M. G., Willey, J. C., Jansen, G., van Zantwijk, C. H., Noordhuis, P., DeMuth, J. P., et al. (2000). mRNA expression levels of methotrexate resistance-related proteins in childhood leukemia as determined by a standardized competitive template-based RT-PCR method. Leukemia, 14, 2166–2175.

    Article  PubMed  CAS  Google Scholar 

  135. Levy, A. S., Sather, H. N., Steinherz, P. G., Sowers, R., La, M., Moscow, J. A., et al. (2003). Reduced folate carrier and dihydrofolate reductase expression in acute lymphoblastic leukemia may predict outcome: A Children’s Cancer Group study. Journal of Pediatric Hematology/Oncology, 25, 688–695.

    Article  PubMed  Google Scholar 

  136. Ge, Y., Haska, C. L., LaFiura, K., Devidas, M., Linda, S. B., Liu, M., et al. (2007). Prognostic role of the reduced folate carrier, the major membrane transporter for methotrexate, in childhood acute lymphoblastic leukemia: A report from the Children’s Oncology Group. Clinical Cancer Research, 13, 451–457.

    Article  PubMed  CAS  Google Scholar 

  137. Guo, W., Healey, J. H., Meyers, P. A., Ladanyi, M., Huvos, A. G., Bertino, J. R., et al. (1999). Mechanisms of methotrexate resistance in osteosarcoma. Clinical Cancer Research, 5, 621–627.

    PubMed  CAS  Google Scholar 

  138. Pui, C. H., & Evans, W. E. (1998). Acute lymphoblastic leukemia. New England Journal of Medicine, 339, 605–615.

    Article  PubMed  CAS  Google Scholar 

  139. Belkov, V. M., Krynetski, E. Y., Schuetz, J. D., Yanishevski, Y., Masson, E., Mathew, S., et al. (1999). Reduced folate carrier expression in acute lymphoblastic leukemia: A mechanism for ploidy but not lineage differences in methotrexate accumulation. Blood, 93, 1643–1650.

    PubMed  CAS  Google Scholar 

  140. Whitehead, V. M., Payment, C., Cooley, L., Lauer, S. J., Mahoney, D. H., Shuster, J. J., et al. (2001). The association of the TEL-AML1 chromosomal translocation with the accumulation of methotrexate polyglutamates in lymphoblasts and with ploidy in childhood B-progenitor cell acute lymphoblastic leukemia: A Pediatric Oncology Group study. Leukemia, 15, 1081–1088.

    Article  PubMed  CAS  Google Scholar 

  141. Kager, L., Cheok, M., Yang, W., Zaza, G., Cheng, Q., Panetta, J. C., et al. (2005). Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics. Journal of Clinical Investigation, 115, 110–117.

    Article  PubMed  CAS  Google Scholar 

  142. Ifergan, I., Meller, I., Issakov, J., & Assaraf, Y. G. (2003). Reduced folate carrier expression in osteosarcomal. Implications for the prediction of tumor chemosensitivity. Cancer, 98, 1958–1966.

    Article  PubMed  CAS  Google Scholar 

  143. Chango, A., Emery-Fillon, N., de Courcy, G. P., Lambert, D., Pfister, M., Rosenblatt, D. S., et al. (2000). A polymorphism (80G->A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Molecular Genetics and Metabolism, 70, 310–315.

    Article  PubMed  CAS  Google Scholar 

  144. Whetstine, J. R., Gifford, A. J., Witt, T., Liu, X. Y., Flatley, R. M., Norris, M., et al. (2001). Single nucleotide polymorphisms in the human reduced folate carrier: Characterization of a high-frequency G/A variant at position 80 and transport properties of the His(27) and Arg(27) carriers. Clinical Cancer Research, 7, 3416–3422.

    PubMed  CAS  Google Scholar 

  145. Shaw, G. M., Lammer, E. J., Zhu, H., Baker, M. W., Neri, E., & Finnell, R. H. (2002). Maternal periconceptional vitamin use, genetic variation of infant reduced folate carrier (A80G), and risk of spina bifida. American Journal of Medical Genetics, 108, 1–6.

    Article  PubMed  Google Scholar 

  146. Winkelmayer, W. C., Eberle, C., Sunder-Plassmann, G., & Fodinger, M. (2003). Effects of the glutamate carboxypeptidase II (GCP2 1561C>T) and reduced folate carrier (RFC1 80G>A) allelic variants on folate and total homocysteine levels in kidney transplant patients. Kidney International, 63, 2280–2285.

    Article  PubMed  CAS  Google Scholar 

  147. Morin, I., Devlin, A. M., Leclerc, D., Sabbaghian, N., Halsted, C. H., Finnell, R., et al. (2003). Evaluation of genetic variants in the reduced folate carrier and in glutamate carboxypeptidase II for spina bifida risk. Molecular Genetics and Metabolism, 79, 197–200.

    Article  PubMed  CAS  Google Scholar 

  148. Kishi, S., Griener, J., Cheng, C., Das, S., Cook, E. H., Pei, D., et al. (2003). Homocysteine, pharmacogenetics, and neurotoxicity in children with leukemia. Journal of Clinical Oncology, 21, 3084–3091.

    Article  PubMed  CAS  Google Scholar 

  149. De Marco, P., Calevo, M. G., Moroni, A., Merello, E., Raso, A., Finnell, R. H., et al. (2003). Reduced folate carrier polymorphism (80A->G) and neural tube defects. European Journal of Human Genetics, 11, 245–252.

    Article  PubMed  CAS  Google Scholar 

  150. Kaufman, Y., Drori, S., Cole, P. D., Kamen, B. A., Sirota, J., Ifergan, I., et al. (2004). Reduced folate carrier mutations are not the mechanism underlying methotrexate resistance in childhood acute lymphoblastic leukemia. Cancer, 100, 773–782.

    Article  PubMed  CAS  Google Scholar 

  151. Shaw, G. M., Zhu, H., Lammer, E. J., Yang, W., & Finnell, R. H. (2003). Genetic variation of infant reduced folate carrier (A80G) and risk of orofacial and conotruncal heart defects. American Journal of Epidemiology, 158, 747–752.

    Article  PubMed  Google Scholar 

  152. de Jonge, R., Hooijberg, J. H., van Zelst, B. D., Jansen, G., van Zantwijk, C. H., Kaspers, G. J. L., et al. (2005). Effects of polymorphisms in folate-related genes on in vitro methotrexate sensitivity in pediatric acute lymphoblastic leukemia. Blood, 106, 717–720.

    Article  PubMed  CAS  Google Scholar 

  153. Ulrich, C. M., Curtin, K., Potter, J. D., Bigler, J., Caan, B., & Slattery, M. L. (2005). Polymorphisms in the reduced folate carrier, thymidylate synthase, or methionine synthase and risk of colon cancer. Cancer Epidemiology, Biomarkers & Prevention, 14, 2509–2516.

    Article  CAS  Google Scholar 

  154. Yates, Z., & Lucock, M. (2005). G80A reduced folate carrier SNP modulates cellular uptake of folate and affords protection against thrombosis via a non-homocysteine related mechanism. Life Science, 77, 2735–2742.

    Article  CAS  Google Scholar 

  155. Skibola, C. F., Forrest, M. S., Coppede, F., Agana, L., Hubbard, A., Smith, M. T., et al. (2004). Polymorphisms and haplotypes in folate-metabolizing genes and risk of non-Hodgkin lymphoma. Blood, 104, 2155–2162.

    Article  PubMed  CAS  Google Scholar 

  156. Lightfoot, T. J., Skibola, C. F., Willett, E. V., Skibola, D. R., Allan, J. M., Coppede, F., et al. (2005). Risk of non-Hodgkin lymphoma associated with polymorphisms in folate-metabolizing genes. Cancer Epidemiology, Biomarkers & Prevention, 14, 2999–3003.

    Article  CAS  Google Scholar 

  157. Laverdiere, C., Chiasson, S., Costea, I., Moghrabi, A., & Krajinovic, M. (2002). Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia. Blood, 100, 3832–3834.

    Article  PubMed  Google Scholar 

  158. Wang, L., Chen, W., Wang, J., Tan, Y., Zhou, Y., Ding, W., et al. (2007). Reduced folate carrier gene G80A polymorphism is associated with an increased risk of gastroesophageal cancers in a chinese population. European Journal of Cancer (in press).

  159. Merola, P. R., Sowers, R., Yang, R., Mazza, B., Elisseyeff, Y., Steinherz, P., et al. (2002). Reduced folate carrier sequence alterations are not common in leukemia/lymphoma samples. Proceedings of the American Association for Cancer Research, 43, 60.

    Google Scholar 

  160. Yang, R., Sowers, R., Mazza, B., Healey, J. H., Huvos, A., Grier, H., et al. (2002). Sequence alterations in the reduced folate carrier are observed in osteosarcoma tumor samples. Clinical Cancer Research, 9, 837–844.

    Google Scholar 

  161. Flintoff, W. F., Sadlish, H., Gorlick, R., Yang, R., & Williams, F. M. R. (2004). Functional analysis of altered reduced folate carrier sequence changes identified in osteosarcomas. Biochimica et Biophysica, 1690, 110–117.

    CAS  Google Scholar 

  162. O’Leary, V. B., Pangilinan, F., Cox, C., Parle-McDermott, A., Conley, M., Molloy, A. M., et al. (2006). Reduced folate carrier polymorphisms and neural tube defect risk. Molecular Genetics and Metabolism, 87, 364–369.

    Article  PubMed  CAS  Google Scholar 

  163. Day, D. A., & Tuite, M. F. (2003). Post-transcriptional gene regulatory mechanisms in eukaryotes: An overview. Journal of Endocrinology, 157, 361–371.

    Article  Google Scholar 

  164. Gifford, A. J., Whetstine, J. R., Bark, K. S., Kulkarni, J. S., Taub, J. W., Haber, M., et al. (2002). Mutations in the reduced folate carrier gene (RFC) in childhood acute lymphoblastic leukemia (ALL). Abstracts, American Association for Cancer Research, 41, 758.

    Google Scholar 

  165. Jackman, A. L., Theti, D. S., & Gibbs, D. D. (2004). Antifolates targeted specifically to the folate receptor. Advanced Drug Delivery Reviews, 56, 1111–1125.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry H. Matherly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matherly, L.H., Hou, Z. & Deng, Y. Human reduced folate carrier: translation of basic biology to cancer etiology and therapy. Cancer Metastasis Rev 26, 111–128 (2007). https://doi.org/10.1007/s10555-007-9046-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9046-2

Keywords

Navigation