Skip to main content

Advertisement

Log in

A unique RNA-directed nucleoside analog is cytotoxic to breast cancer cells and depletes cyclin E levels

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

In contrast to deoxyribose or arabinose containing nucleoside analogs that are currently established for cancer therapeutics, 8-chloro-adenosine (8-Cl-Ado) possesses a ribose sugar. This unique nucleoside analog is RNA-directed and is in a phase I clinical trial for hematological malignancies. RNA-directed therapies are effective for the treatment of many malignancies as their activities are primarily aimed at short-lived transcripts, which are typically encoded by genes that promote the growth and survival of tumor cells such as cyclin E in breast cancer. Based on this, we hypothesized that 8-Cl-Ado, a transcription inhibitor, will be effective for the treatment of breast cancer cells. The metabolism of 8-Cl-Ado and the effect on ATP in the breast cancer cell lines MCF-7 and BT-474 were measured using HPLC analysis. In these cells, 8-Cl-Ado was effectively taken up, converted to its cytotoxic metabolite, 8-Cl-ATP, and depleted the endogenous ATP levels. This in turn led to an inhibition of RNA synthesis. The RNA synthesis inhibition was associated with a depletion of cyclin E expression, which is indicative of a diminished tumorigenic phenotype. The final outcome of 8-Cl-Ado treatment of the breast cancer cells was growth inhibition due to an induction of apoptosis and a loss of clonogenic survival. These results indicate that 8-Cl-Ado, which is currently in clinic for hematological malignancies, may be an effective agent for the treatment of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stellrecht CM, Chen LS, Gandhi V (2005) Inhibition of oncogene expression by RNA-directed agents. In: Gandhi V (ed) Transcription as a target for cancer therapeutics AACR educational book. American Association for Cancer Research, Philadelphia, pp 338–343

    Google Scholar 

  2. Derheimer FA, Chang CW, Ljungman M (2005) Transcription inhibition: a potential strategy for cancer therapeutics. Eur J Cancer 41:2569–2576

    Article  CAS  PubMed  Google Scholar 

  3. Bakheet T, Williams BR, Khabar KS (2003) ARED 2.0: an update of AU-rich element mRNA database. Nucleic Acids Res 31:421–423

    Article  CAS  PubMed  Google Scholar 

  4. Lam LT, Pickeral OK, Peng AC et al. (2001) Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol. Genome Biol 2:research0041.0041-research0041.0011

  5. Weinstein IB (2002) Addiction to oncogenes–the Achilles heal of cancer. Science 297:63–64

    Article  CAS  PubMed  Google Scholar 

  6. Weinstein IB, Joe A (2008) Oncogene addiction. Cancer Res 68:3077–3080

    Article  CAS  PubMed  Google Scholar 

  7. Weinstein B (2008) Relevance of the concept of oncogene addiction to hormonal carcinogenesis and molecular targeting in cancer prevention and therapy. Adv Exp Med Biol 617:3–13

    Article  PubMed  Google Scholar 

  8. Certo M, Moore Vdel G, Nishino M et al (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9:351–365

    Article  CAS  PubMed  Google Scholar 

  9. Chen R, Wierda WG, Chubb S et al (2009) Mechanism of action of SNS-032, a novel cyclin-dependent kinase inhibitor, in chronic lymphocytic leukemia. Blood 113:4637–4645. doi:10.1182/blood-2008-12-190256

    Article  CAS  PubMed  Google Scholar 

  10. Chen R, Keating MJ, Gandhi V, Plunkett W (2005) Transcription inhibition by flavopiridol: mechanism of chronic lymphocytic leukemia cell death. Blood 106:2513–2519

    Article  CAS  PubMed  Google Scholar 

  11. Gojo I, Zhang B, Fenton RG (2002) The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in multiple myeloma cells through transcriptional repression and down-regulation of Mcl-1. Clin Cancer Res 8:3527–3538

    CAS  PubMed  Google Scholar 

  12. Pepper C, Thomas A, Hoy T, Fegan C, Bentley P (2001) Flavopiridol circumvents Bcl-2 family mediated inhibition of apoptosis and drug resistance in B-cell chronic lymphocytic leukaemia. Br J Haematol 114:70–77

    Article  CAS  PubMed  Google Scholar 

  13. Phillip CJ, Stellrecht CM, Nimmanapalli R, Gandhi V (2009) Targeting MET transcription as a therapeutic strategy in multiple myeloma. Cancer Chemother Pharmacol 63:587–597. doi:10.1007/s00280-008-0770-2

    Article  PubMed  Google Scholar 

  14. Raje N, Kumar S, Hideshima T et al (2005) Seliciclib (CYC202 or R-roscovitine), a small-molecule cyclin-dependent kinase inhibitor, mediates activity via down-regulation of Mcl-1 in multiple myeloma. Blood 106:1042–1047

    Article  CAS  PubMed  Google Scholar 

  15. MacCallum DE, Melville J, Frame S et al (2005) Seliciclib (CYC202, R-Roscovitine) induces cell death in multiple myeloma cells by inhibition of RNA polymerase II-dependent transcription and down-regulation of Mcl-1. Cancer Res 65:5399–5407

    Article  CAS  PubMed  Google Scholar 

  16. Shapiro GI (2006) Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 24:1770–1783

    Article  CAS  PubMed  Google Scholar 

  17. Balakrishnan K, Stellrecht CM, Genini D et al (2005) Cell death of bioenergetically compromised and transcriptionally challenged CLL lymphocytes by chlorinated ATP. Blood 105:4455–4462. doi:10.1182/blood-2004-05-1699

    Article  CAS  PubMed  Google Scholar 

  18. Langeveld CH, Jongenelen CA, Theeuwes JW et al (1997) The antiproliferative effect of 8-chloro-adenosine, an active metabolite of 8-chloro-cyclic adenosine monophosphate, and disturbances in nucleic acid synthesis and cell cycle kinetics. Biochem Pharmacol 53:141–148. doi:S0006-2952(96)00593-X[pii]

    Article  CAS  PubMed  Google Scholar 

  19. Langeveld CH, Jongenelen CA, Heimans JJ, Stoof JC (1992) 8-Chloro-cyclic adenosine monophosphate, a novel cyclic AMP analog that inhibits human glioma cell growth in concentrations that do not induce differentiation. Exp Neurol 117:196–203. doi:0014-4886(92)90127-C[pii]

    Article  CAS  PubMed  Google Scholar 

  20. Langeveld CH, Jongenelen CA, Heimans JJ, Stoof JC (1992) Growth inhibition of human glioma cells induced by 8-chloroadenosine, an active metabolite of 8-chloro cyclic adenosine 3′:5′-monophosphate. Cancer Res 52:3994–3999

    CAS  PubMed  Google Scholar 

  21. Gandhi V, Ayres M, Halgren RG et al (2001) 8-chloro-cAMP and 8-chloro-adenosine act by the same mechanism in multiple myeloma cells. Cancer Res 61:5474–5479

    CAS  PubMed  Google Scholar 

  22. Krett NL, Zell JL, Halgren RG et al (1997) Cyclic adenosine-3′, 5′-monophosphate-mediated cytotoxicity in steroid sensitive and resistant myeloma. Clin Cancer Res 3:1781–1787

    CAS  PubMed  Google Scholar 

  23. Halgren RG, Traynor AE, Pillay S et al (1998) 8Cl-cAMP cytotoxicity in both steroid sensitive and insensitive multiple myeloma cell lines is mediated by 8Cl-adenosine. Blood 92:2893–2898

    CAS  PubMed  Google Scholar 

  24. Zhu B, Zhang LH, Zhao YM, Cui JR, Strada SJ (2006) 8-chloroadenosine induced HL-60 cell growth inhibition, differentiation, and G(0)/G(1) arrest involves attenuated cyclin D1 and telomerase and up-regulated p21(WAF1/CIP1). J Cell Biochem 97:166–177

    Article  CAS  PubMed  Google Scholar 

  25. Carlson CC, Chinery R, Burnham LL, Dransfield DT (2000) 8-Cl-adenosine-induced inhibition of colorectal cancer growth in vitro and in vivo. Neoplasia 2:441–448

    Article  CAS  PubMed  Google Scholar 

  26. Zhang HY, Gu YY, Li ZG et al (2004) Exposure of human lung cancer cells to 8-chloro-adenosine induces G2/M arrest and mitotic catastrophe. Neoplasia 6:802–812

    Article  CAS  PubMed  Google Scholar 

  27. Stellrecht CM, Rodriguez CO Jr, Ayres M, Gandhi V (2003) RNA-directed actions of 8-chloro-adenosine in multiple myeloma cells. Cancer Res 63:7968–7974

    CAS  PubMed  Google Scholar 

  28. Chen LS, Sheppard TL (2004) Chain termination and inhibition of Saccharomyces cerevisiae poly(A) polymerase by C-8-modified ATP analogs. J Biol Chem 279:40405–40411

    Article  CAS  PubMed  Google Scholar 

  29. Stellrecht CM, Phillip CJ, Cervantes-Gomez F, Gandhi V (2007) Multiple myeloma cell killing by depletion of the MET receptor tyrosine kinase. Cancer Res 67:9913–9920. doi:10.1158/0008-5472.CAN-07-0770

    Article  CAS  PubMed  Google Scholar 

  30. Keyomarsi K, Pardee AB (1993) Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc Natl Acad Sci U S A 90:1112–1116

    Article  CAS  PubMed  Google Scholar 

  31. Keyomarsi K, O’Leary N, Molnar G et al (1994) Cyclin E, a potential prognostic marker for breast cancer. Cancer Res 54:380–385

    CAS  PubMed  Google Scholar 

  32. Reed SI (2005) Deregulation of cyclin E in cancer. In: Reed SI (ed) The ubiquitin proteasome system: roles and targets in cancer AACR educational book. American Association for Cancer Research, Philadelphia, pp 53–56

    Google Scholar 

  33. Keck JM, Summers MK, Tedesco D et al (2007) Cyclin E overexpression impairs progression through mitosis by inhibiting APCCdh1. J Cell Biol 178:371–385

    Article  CAS  PubMed  Google Scholar 

  34. Akli S, Zheng PJ, Multani AS et al (2004) Tumor-specific low molecular weight forms of cyclin E induce genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. Cancer Res 64:3198–3208

    Article  CAS  PubMed  Google Scholar 

  35. Ekholm-Reed S, Mendez J, Tedesco D et al (2004) Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J Cell Biol 165:789–800

    Article  CAS  PubMed  Google Scholar 

  36. Bagheri-Yarmand R, Keyomarsi K (2009) Overexpression of full length or low molecular weight of cyclin E leads to differential G2/M transition and mitotic defects through deregulation of cdc25c. AACR Meet Abstr 2009:2473

    Google Scholar 

  37. Keyomarsi K, Tucker SL, Buchholz TA et al (2002) Cyclin E and survival in patients with breast cancer. N Engl J Med 347:1566–1575

    Article  CAS  PubMed  Google Scholar 

  38. Sieuwerts AM, Look MP, Meijer-van Gelder ME et al (2006) Which cyclin E prevails as prognostic marker for breast cancer? Results from a retrospective study involving 635 lymph node-negative breast cancer patients. Clin Cancer Res 12:3319–3328

    Article  CAS  PubMed  Google Scholar 

  39. Keyomarsi K, Tucker SL, Bedrosian I (2003) Cyclin E is a more powerful predictor of breast cancer outcome than proliferation. Nat Med 9:152

    Article  CAS  PubMed  Google Scholar 

  40. Wingate H, Bedrosian I, Akli S, Keyomarsi K (2003) The low molecular weight (LMW) isoforms of cyclin E deregulate the cell cycle of mammary epithelial cells. Cell cycle 2:461–466

    CAS  PubMed  Google Scholar 

  41. Wingate H, Zhang N, McGarhen MJ et al (2005) The tumor-specific hyperactive forms of cyclin E are resistant to inhibition by p21 and p27. J Biol Chem 280:15148–15157

    Article  CAS  PubMed  Google Scholar 

  42. Akli S, Van Pelt CS, Bui T et al (2007) Overexpression of the low molecular weight cyclin E in transgenic mice induces metastatic mammary carcinomas through the disruption of the ARF-p53 pathway. Cancer Res 67:7212–7222

    Article  CAS  PubMed  Google Scholar 

  43. Clurman BE, Sheaff RJ, Thress K, Groudine M, Roberts JM (1996) Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev 10:1979–1990

    Article  CAS  PubMed  Google Scholar 

  44. Hapke DM, Stegmann AP, Mitchell BS (1996) Retroviral transfer of deoxycytidine kinase into tumor cell lines enhances nucleoside toxicity. Cancer Res 56:2343–2347

    CAS  PubMed  Google Scholar 

  45. Arner ES, Eriksson S (1995) Mammalian deoxyribonucleoside kinases. Pharmacol Ther 67:155–186

    Article  CAS  PubMed  Google Scholar 

  46. Shedden K, Townsend LB, Drach JC, Rosania GR (2003) A rational approach to personalized anticancer therapy: chemoinformatic analysis reveals mechanistic gene-drug associations. Pharm Res 20:843–847

    Article  CAS  PubMed  Google Scholar 

  47. Carlson CC, Burnham LL, Shanks RA, Dransfield DT (2001) 8-Cl-adenosine induces differentiation in LS174T cells. Dig Dis Sci 46:757–764

    Article  CAS  PubMed  Google Scholar 

  48. Van Lookeren Campagne MM, Villalba Diaz F, Jastorff B, Kessin RH (1991) 8-Chloroadenosine 3′, 5′-monophosphate inhibits the growth of Chinese hamster ovary and Molt-4 cells through its adenosine metabolite. Cancer Res 51:1600–1605

    PubMed  Google Scholar 

  49. Lu X, Errington J, Chen VJ et al (2001) Cellular ATP depletion by LY309887 as a predictor of growth inhibition in human tumor cell lines. Clin Cancer Res 6:271–277

    Google Scholar 

  50. Jang JY, Choi Y, Jeon YK, Kim CW (2008) Suppression of adenine nucleotide translocase-2 by vector-based siRNA in human breast cancer cells induces apoptosis and inhibits tumor growth in vitro and in vivo. Breast Cancer Res 10:R11

    Article  PubMed  Google Scholar 

  51. Akli S, Keyomarsi K (2003) Cyclin E and its low molecular weight forms in human cancer and as targets for cancer therapy. Cancer Biol Ther 2:S38–S47

    CAS  PubMed  Google Scholar 

  52. Spruck CH, Won KA, Reed SI (1999) Deregulated cyclin E induces chromosome instability. Nature 401:297–300

    Article  CAS  PubMed  Google Scholar 

  53. Ma Y, Fiering S, Black C et al (2007) Transgenic cyclin E triggers dysplasia and multiple pulmonary adenocarcinomas. Proc Natl Acad Sci U S A 104:4089–4094

    Article  CAS  PubMed  Google Scholar 

  54. Sgambato A, Camerini A, Pani G et al (2003) Increased expression of cyclin E is associated with an increased resistance to doxorubicin in rat fibroblasts. Br J Cancer 88:1956–1962

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants KG080366 from the Susan G. Komen for the Cure and CA85915 from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine M. Stellrecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stellrecht, C.M., Ayres, M., Arya, R. et al. A unique RNA-directed nucleoside analog is cytotoxic to breast cancer cells and depletes cyclin E levels. Breast Cancer Res Treat 121, 355–364 (2010). https://doi.org/10.1007/s10549-009-0481-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0481-3

Keywords

Navigation