Skip to main content

Advertisement

Log in

Circulating transforming growth factor-β-1 and breast cancer prognosis: results from the Shanghai Breast Cancer Study

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Introduction Studies investigating the prognostic effect of circulating TGF-β-1 in breast cancer have given inconsistent findings. The purpose of this study is to evaluate whether circulating transforming growth factor beta 1 (TGF-β-1) is associated with overall and disease-free survival in a cohort of recently diagnosed breast cancer patients. Methods We measured TGF-β-1 levels in plasma samples of breast cancer patients in the Shanghai Breast Cancer Study, a population-based case–control study. We evaluated the relationship between TGF-β-1 levels and overall and disease-free survival. The median follow up time was 7.2 years. Results We observed that, compared with the patients with the lowest quartile of plasma TGF-β-1, patients with the highest quartile of plasma TGF-β-1 had significantly worse overall survival with hazards ratio (HR) = 2.78, with 95% confidence interval (CI): 1.34–5.79 and disease-free survival with HR = 2.49, 95% CI: 1.15–5.41, while the patients with the second and third quartiles of plasma TGF-β-1 did not have significantly different overall and disease-free breast cancer survival. The shape of association between plasma TGF-β-1 levels and breast cancer survival appears to be non-linear. Stratified analysis by stage of disease did not appreciably change the association pattern. Conclusions We conclude that the relationship between circulating levels of TGF-β-1 and prognosis in breast cancer is complex and non-linear. High levels of TGF-β-1 are associated with worse survival independent of stage of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Massague J, Chen YG (2000) Controlling TGF-beta signaling. Genes Dev 14:627–644

    PubMed  CAS  Google Scholar 

  2. Massague J (1996) TGFbeta signaling: receptors, transducers, and Mad proteins. Cell 85:947–950

    Article  PubMed  CAS  Google Scholar 

  3. Grau AM, Zhang L, Wang W et al (1997) Induction of p21waf1 expression and growth inhibition by transforming growth factor beta involve the tumor suppressor gene DPC4 in human pancreatic adenocarcinoma cells. Cancer Res 57:3929–3934

    PubMed  CAS  Google Scholar 

  4. Hahn SA, Schutte M, Hoque AT et al (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353

    Article  PubMed  CAS  Google Scholar 

  5. Hunt KK, Fleming JB, Abramian A et al (1998) Overexpression of the tumor suppressor gene Smad4/DPC4 induces p21waf1 expression and growth inhibition in human carcinoma cells. Cancer Res 58:5656–5661

    PubMed  CAS  Google Scholar 

  6. Bakin AV, Tomlinson AK, Bhowmick NA et al (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275:36803–36810

    Article  PubMed  CAS  Google Scholar 

  7. Teraoka H, Sawada T, Nishihara T et al (2001) Enhanced VEGF production and decreased immunogenicity induced by TGF-beta 1 promote liver metastasis of pancreatic cancer. Br J Cancer 85:612–617

    Article  PubMed  CAS  Google Scholar 

  8. Arteaga CL (2006) Inhibition of TGFbeta signaling in cancer therapy. Curr Opin Genet Dev 16:30–37

    Article  PubMed  CAS  Google Scholar 

  9. Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nature Rev 6:506–520

    Article  CAS  Google Scholar 

  10. Stuelten CH, DaCosta Byfield S, Arany PR et al (2005) Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. J Cell Sci 118:2143–2153

    Article  PubMed  CAS  Google Scholar 

  11. Kao JY, Gong Y, Chen CM et al (2003) Tumor-derived TGF-beta reduces the efficacy of dendritic cell/tumor fusion vaccine. J Immunol 170:3806–3811

    PubMed  CAS  Google Scholar 

  12. Wakefield LM, Letterio JJ, Chen T et al (1995) Transforming growth factor-beta1 circulates in normal human plasma and is unchanged in advanced metastatic breast cancer. Clin Cancer Res 1:129–136

    PubMed  CAS  Google Scholar 

  13. Tsushima H, Ito N, Tamura S et al (2001) Circulating transforming growth factor beta 1 as a predictor of liver metastasis after resection in colorectal cancer. Clin Cancer Res 7:1258–1262

    PubMed  CAS  Google Scholar 

  14. Ivanovic V, Todorovic-Rakovic N, Demajo M et al (2003) Elevated plasma levels of transforming growth factor-beta 1 (TGF-beta 1) in patients with advanced breast cancer: association with disease progression. Eur J Cancer 39:454–461

    Article  PubMed  CAS  Google Scholar 

  15. Decensi A, Torrisi R, Fontana V et al (1998) Correlation between plasma transforming growth factor-beta 1 and second primary breast cancer in a chemoprevention trial. Eur J Cancer 34:999–1003

    Article  PubMed  CAS  Google Scholar 

  16. Shariat SF, Shalev M, Menesses-Diaz A et al (2001) Preoperative plasma levels of transforming growth factor beta(1) (TGF-beta(1)) strongly predict progression in patients undergoing radical prostatectomy. J Clin Oncol 19:2856–2864

    PubMed  CAS  Google Scholar 

  17. Okumoto K, Hattori E, Tamura K et al (2004) Possible contribution of circulating transforming growth factor-beta1 to immunity and prognosis in unresectable hepatocellular carcinoma. Liver Int 24:21–28

    Article  PubMed  CAS  Google Scholar 

  18. Kong FM, Anscher MS, Murase T et al (1995) Elevated plasma transforming growth factor-beta 1 levels in breast cancer patients decrease after surgical removal of the tumor. Ann Surg 222:155–162

    Article  PubMed  CAS  Google Scholar 

  19. Sheen-Chen SM, Chen HS, Sheen CW et al (2001) Serum levels of transforming growth factor beta1 in patients with breast cancer. Arch Surg 136:937–940

    Article  PubMed  CAS  Google Scholar 

  20. Lebrecht A, Grimm C, Euller G et al (2004) Transforming growth factor beta 1 serum levels in patients with preinvasive and invasive lesions of the breast. Int J Biol Markers 19:236–239

    PubMed  CAS  Google Scholar 

  21. Sminia P, Barten AD, van Waarde MA et al (1998) Plasma transforming growth factor beta levels in breast cancer patients. Oncol Rep 5:485–488

    PubMed  CAS  Google Scholar 

  22. Ivanovic V, Demajo M, Krtolica K et al (2006) Elevated plasma TGF-beta1 levels correlate with decreased survival of metastatic breast cancer patients. Clin Chim Acta 371:191–193

    Article  PubMed  CAS  Google Scholar 

  23. Gao YT, Shu XO, Dai Q et al (2000) Association of menstrual and reproductive factors with breast cancer risk: results from the Shanghai Breast Cancer Study. Int J Cancer 87:295–300

    Article  PubMed  CAS  Google Scholar 

  24. Biswas S, Guix M, Rinehart C et al (2007) Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J Clin Invest

  25. Harrell FEJ (2001) Regression modeling strategies, with applications to linear models, logistic regression, and survival analysis. Springer, New York

    Google Scholar 

  26. Hayes DF, Ethier S, Lippman ME (2006) New guidelines for reporting of tumor marker studies in breast cancer research and treatment: REMARK. Breast Cancer Res Treat 100:237–238

    Article  PubMed  Google Scholar 

  27. Lu H, Shu XO, Cui Y et al (2005) Association of genetic polymorphisms in the VEGF gene with breast cancer survival. Cancer Res 65:5015–5019

    Article  PubMed  CAS  Google Scholar 

  28. Parrinello G, Licata A, Colomba D et al (2005) Left ventricular filling abnormalities and obesity-associated hypertension: relationship with overproduction of circulating transforming growth factor beta1. J Hum Hypertens19:543–550

    Article  PubMed  CAS  Google Scholar 

  29. Zheng W, Chow WH, Yang G et al (2005) The Shanghai Women’s Health Study: rationale, study design, and baseline characteristics. Am J Epidemiol 162:1123–1131

    Article  PubMed  Google Scholar 

  30. Li C, Guo B, Wilson PB et al (2000) Plasma levels of soluble CD105 correlate with metastasis in patients with breast cancer. Int J Cancer 89:122–126

    Article  PubMed  CAS  Google Scholar 

  31. Nikolic-Vukosavljevic D, Todorovic-Rakovic N, Demajo M et al (2004) Plasma TGF-beta1-related survival of postmenopausal metastatic breast cancer patients. Clin Exp Metastasis 21:581–585

    Article  PubMed  CAS  Google Scholar 

  32. Jeon JH, Kim YS, Choi EJ et al (2001) Implication of co-measured platelet factor 4 in the reliability of the results of the plasma transforming growth factor-beta 1 measurement. Cytokine 16:102–105

    Article  PubMed  CAS  Google Scholar 

  33. Desruisseau S, Palmari J, Giusti C et al (2006) Determination of TGFbeta1 protein level in human primary breast cancers and its relationship with survival. Br J Cancer 94:239–246

    Article  PubMed  CAS  Google Scholar 

  34. Grainger DJ, Heathcote K, Chiano M et al (1999) Genetic control of the circulating concentration of transforming growth factor type beta1. Hum Mol Genet 8:93–97

    Article  PubMed  CAS  Google Scholar 

  35. Yokota M, Ichihara S, Lin TL et al (2000) Association of a T29–>C polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation 101:2783–2787

    PubMed  CAS  Google Scholar 

  36. Shu XO, Gao YT, Cai Q et al (2004) Genetic polymorphisms in the TGF-beta 1 gene and breast cancer survival: a report from the Shanghai Breast Cancer Study. Cancer Res 64:836–839

    Article  PubMed  CAS  Google Scholar 

  37. Yang YA, Dukhanina O, Tang B et al (2002) Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109:1607–1615

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research was supported in part by grant P20RR011792 from the NIH and RCMI, and by RO1 CA64277 from the NCI. We thank Drs. Fan Jin and Qi Dai for valuable contribution in coordinating the filed operation and Regina Courtney and Qing Wang for excellent technical supports. We are grateful to the patients and research staff who participated in the Shanghai Breast Cancer Study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Grau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grau, A.M., Wen, W., Ramroopsingh, D.S. et al. Circulating transforming growth factor-β-1 and breast cancer prognosis: results from the Shanghai Breast Cancer Study. Breast Cancer Res Treat 112, 335–341 (2008). https://doi.org/10.1007/s10549-007-9845-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9845-8

Keywords

Navigation