Skip to main content

Advertisement

Log in

Prothymosin alpha protects cardiomyocytes against ischemia-induced apoptosis via preservation of Akt activation

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The human prothymosin alpha (PTα) gene encodes a 12.5 kDa highly acidic nuclear protein that is widely expressed in mammalian tissues including the heart and importantly, is detectable also in blood serum. During apoptosis or necrosis, PTα changes its nuclear localization and is able to exert an important cytoprotective effect. Since the role of PTα in the heart has never been evaluated, the aim of the present study was to investigate the effects of PTα on cardiomyocytes during ischemic injury. Our data show that seven after myocardial infarction (MI), PTα expression levels are significantly increased both in blood serum and in cardiac tissue, and notably we observe that PTα translocates from the nuclei to cytoplasm and plasma membrane of cardiomyocytes following MI. Furthermore, in vitro experiments in cardiomyocytes, confirm that after 6 h of simulated ischemia (SI), PTα protein levels are upregulated compared to normoxic cells. Importantly, treatment of cardiomyocytes with a recombinant PTα (rPTα), during SI results in a significant decrease in the apoptotic response and in a robust increase in cell survival. Moreover, these effects are accompanied to a significant preservation of the activated levels of the anti-apoptotic serine-threonine kinase Akt. Consistent with our in vitro observation, rPTα-treated MI mice exhibit a strong reduction in infarct size at 24 h, compared to the MI control group and at the molecular level, PTα treatment induces activation of Akt. The present study provides for the first time the demonstration that PTα offers cardioprotection against ischemic injury by an Akt-dependent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Crow MT, Mani K, Nam YJ, Kitsis RN (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95:957–970

    Article  PubMed  CAS  Google Scholar 

  2. Gill C, Mestril R, Samali A (2002) Losing heart: the role of apoptosis in heart disease—a novel therapeutic target? Faseb J 16:135–146

    Article  PubMed  CAS  Google Scholar 

  3. Logue SE, Gustafsson AB, Samali A, Gottlieb RA (2005) Ischemia/reperfusion injury at the intersection with cell death. J Mol Cell Cardiol 38:21–33

    Article  PubMed  CAS  Google Scholar 

  4. Regula KM, Kirshenbaum LA (2005) Apoptosis of ventricular myocytes: a means to an end. J Mol Cell Cardiol 38:3–13

    Article  PubMed  CAS  Google Scholar 

  5. Whelan RS, Mani K, Kitsis RN (2007) Nipping at cardiac remodeling. J Clin Investig 117:2751–2753

    Article  PubMed  CAS  Google Scholar 

  6. Lymperopoulos A, Rengo G, Koch WJ (2007) Adrenal adrenoceptors in heart failure: fine-tuning cardiac stimulation. Trends Mol Med 13:503–511

    Article  PubMed  CAS  Google Scholar 

  7. Kitsis RN, Narula J (2008) Introduction cell death in heart failure. Heart Fail Rev 13:107–109

    Article  PubMed  Google Scholar 

  8. Mani K, Kitsis RN (2003) Myocyte apoptosis: programming ventricular remodelling. J Am Coll Cardiol 41:761–764

    Article  PubMed  Google Scholar 

  9. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988

    Article  PubMed  CAS  Google Scholar 

  10. Rengo G, Perrone Filardi P, Femminella GD, Liccardo D, Zincarelli C, de Lucia C, Pagano G, Marsico F, Lymperopoulos A, Leosco D (2012) Targeting β-adrenergic receptor system via G-protein coupled receptor kinase 2 (GRK2): a new paradigm for therapy and prognostic evaluation in heart failure. FROM BENCH TO BEDSIDE. Circ Heart Fail 5:385–391

    Article  PubMed  CAS  Google Scholar 

  11. Rengo G, Lymperopoulos A, Leosco D, Koch WJ (2011) GRK2 as a novel gene therapy target in heart failure. J Mol Cell Cardiol 50:785–792

    Article  PubMed  CAS  Google Scholar 

  12. Evsta¢eva GA, Belov GA, Kalkum M, Chichkova NV, Bogdanov AA, Agol VI, Vartapetian AB (2000) Prothymosin K fragmentation in apoptosis. FEBS Lett 467:150–154

    Article  Google Scholar 

  13. Ueda H, Fujita R, Yoshida A, Matsunaga H, Ueda M (2007) Identification of prothymosin-alpha 1, the necrosis–apoptosis switch molecule in cortical neuronal cultures. J Cell Biol 176(6):853–862

    Article  PubMed  CAS  Google Scholar 

  14. Letsas KP, Frangou-Lazaridis M (2006) Surfing on prothymosin alpha proliferation and anti-apoptotic properties. Neoplasma 53(2):92–96

    PubMed  CAS  Google Scholar 

  15. Barbini L, Gonzalez R, Dominguez F, Vega F (2006) Apoptotic and proliferating hepatocytes differ in prothymosin alpha expression and cell localization. Mol Cell Biochem 291(1–2):83–91

    Article  PubMed  CAS  Google Scholar 

  16. Hannappel E, Huff T (2003) The thymosins, prothymosin alpha, parathymosin, and alpha-thymosins: structure and function. Vitam Horm 66:257–295

    Article  PubMed  CAS  Google Scholar 

  17. Mosoian A, Teixeira A, Burns CS, Sander LE, Gusella GL, He C, Blander JM, Klotman P, Klotman ME (2010) Prothymosin-alpha inhibits HIV-1 via Toll-like receptor 4-mediated type I interferon induction. Proc Natl Acad Sci USA 107(22):10178–10183

    Article  PubMed  CAS  Google Scholar 

  18. Salgado FJ, Piñeiro A, Canda-Sánchez A, Lojo J, Nogueira M (2005) Prothymosin alpha-receptor associates with lipid rafts in PHA-stimulated lymphocytes. Mol Membr Biol 22(3):163–176

    Article  PubMed  CAS  Google Scholar 

  19. Franco FJ, Diaz C, Barcia M, Arias P, Gomez-Marquez J, Soriano F, Mendez E, Freire M (1989) Synthesis and apparent secretion of prothymosin alpha by different subpopulations of calf and rat thymocytes. Immunology 67(2):263–268

    PubMed  CAS  Google Scholar 

  20. Panneerselvam C, Haritos AA, Caldarella J, Horecker BL (1987) Prothymosin alpha in human blood. Proc Natl Acad Sci USA 84:4465–4469

    Article  PubMed  CAS  Google Scholar 

  21. Lymperopoulos A, Rengo G, Gao E, Ebert SN, Dorn GW 2nd, Koch WJ (2010) Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction. J Biol Chem 285:16378–16386

    Article  PubMed  CAS  Google Scholar 

  22. Rengo G, Zincarelli C, Femminella GD, Liccardo D, Pagano G, de Lucia C, Altobelli GG, Cimini V, Ruggiero D, Perrone-Filardi P, Gao E, Ferrara N, Lymperopoulos A, Koch WJ, Leosco D (2012) Myocardial β2-adrenergic receptor gene delivery promotes coordinated cardiac adaptive remodeling and angiogenesis in heart failure. Br J Pharmacol 166:2348–2361

    Article  PubMed  CAS  Google Scholar 

  23. Tohgo A, Pierce KL, Choy EW, Lefkowitz RJ, Luttrell LM (2002) beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J Biol Chem 277:9429–9436

    Article  PubMed  CAS  Google Scholar 

  24. Ciccarelli M, Chuprun JK, Rengo G, Gao E, Wei Z, Peroutka RJ, Gold J, Gumpert A, Chen M, otis NJ, Dorn GW II, Trimarco B, Iaccarino G, Koch WJ (2011) GRK2 activity impairs cardiac glucose uptake and promotes insulin resistance following myocardial ischemia. Circulation 123:1953–1962

    Article  PubMed  CAS  Google Scholar 

  25. Esposito G, Perrino C, Cannavo A, Schiattarella GG, Borgia F, Sannino A, Pironti G, Gargiulo G, Di Serafino L, Franzone A, Scudiero L, Grieco P, Indolfi C, Chiariello M (2011) EGFR trans-activation by urotensin II receptor is mediated by β-arrestin recruitment and confers cardioprotection in pressure overload-induced cardiac hypertrophy. Basic Res Cardiol 106:577–589

    Article  PubMed  CAS  Google Scholar 

  26. Lymperopoulos A, Rengo G, Zincarelli C, Kim J, Soltys S, Koch WJ (2009) An adrenal β-arrestin 1-mediated signaling pathway underlies angiotensin II-induced aldosterone production in vitro and in vivo. Proc Natl Acad Sci USA 106:5825–5830

    Article  PubMed  CAS  Google Scholar 

  27. Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, Hewett TE, Jones SP, Lefer DJ, Peng CF, Kitsis RN, Molkentin JD (2000) The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J 19:6341–6350

    Article  PubMed  CAS  Google Scholar 

  28. Rengo G, Lymperopoulos A, Zincarelli C, Donniacuo M, Soltys S, Rabinowitz JE, Koch WJ (2009) Myocardial AAV6-βARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure. Circulation 119:89–98

    Article  PubMed  CAS  Google Scholar 

  29. Lymperopoulos A, Rengo G, Zincarelli C, Kim J, Koch WJ (2011) Adrenal β-arrestin-1 inhibition in vivo attenuates post-myocardial infarction progression to heart failure and adverse remodeling via reduction of circulating aldosterone levels. J Am Coll Cardiol 57:356–365

    Article  PubMed  CAS  Google Scholar 

  30. Cook CA, Matsui C, Li L, Rosenzweig A (2002) Transcriptional effects of chronic Akt activation in the heart. J Biol Chem 277:22528–22533

    Article  PubMed  CAS  Google Scholar 

  31. Saraste A (1999) Morphologic criteria and detection of apoptosis. Herz 24(3):189–195

    Article  PubMed  CAS  Google Scholar 

  32. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  PubMed  CAS  Google Scholar 

  33. Guaiquil VH, Golde DW, Beckles DL, Mascareno EJ, Siddiqui MA (2004) Vitamin C inhibits hypoxia-induced damage and apoptotic signaling pathways in cardiomyocytes and ischemic hearts. Free Radic Biol Med 37(9):1419–1429

    Article  PubMed  CAS  Google Scholar 

  34. Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K (2000) Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101:660–667

    Article  PubMed  CAS  Google Scholar 

  35. Matsui T, Nagoshi T, Rosenzweig A (2003) Akt and PI 3-kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle 2(3):220–223

    Article  PubMed  CAS  Google Scholar 

  36. Leosco D, Rengo G, Iaccarino G, Golino L, Marchese M, Fortunato F, Zincarelli C, Sansari E, Ciccarelli M, Galasso G, Altobelli GG, Conti V, Matrone G, Cimini V, Ferrara N, Filippelli A, Koch WJ, Rengo F (2008) Exercise promotes angiogenesis and improves β-adrenergic receptor signaling in the post-ischemic failing rat heart. Cardiovasc Res 78:385–394

    Article  PubMed  CAS  Google Scholar 

  37. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P (1996) Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Investig 74:86–107

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by the Grant PRIN 2007 (No. 2007WS3JL3) from the Ministero dell’Università e della Ricerca Scientifica.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Cannavo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannavo, A., Rengo, G., Liccardo, D. et al. Prothymosin alpha protects cardiomyocytes against ischemia-induced apoptosis via preservation of Akt activation. Apoptosis 18, 1252–1261 (2013). https://doi.org/10.1007/s10495-013-0876-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0876-9

Keywords

Navigation