Skip to main content
Log in

Role of Bim in apoptosis induced in H460 lung tumor cells by the spindle poison Combretastatin-A4

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The BH3-only Bcl-2 subfamily member Bim is a well known apoptosis promoting protein. However, the mechanisms upstream of mitochondrion membrane permeability by which Bim is involved in apoptosis have been poorly investigated, particularly in response to agents capable of interfering with the cytoskeleton architecture and arresting cells in mitosis. Based on the observation that Bim is sequestered on the microtubule-array by interaction with the light chain of dynein, we have investigated upon depolymerisation, whether Bim could be involved in the commitment of apoptosis. With this purpose H460 Non Small Lung Cancer Cells (NSLC) were treated with the microtubule damaging agent combretastatin-A4 (CA-4) (7.5 nM; 8–48 h), and various parameters were investigated. Upon treatment, cells arrested in mitosis and died through a caspase-3-dependent mitotic catastrophe. Transient knock down of Bim drastically reduced apoptosis, indicating that this protein was involved in cell death as induced by microtubules disorganisation. In response to increasing conditions of microtubules depolymerisation, we found that the protein level of Bim was strongly upregulated in a time-dependent manner at transcriptional level. Furthermore, Bim was released from microtubule-associated components. Bim was translocated to mitochondria, even in a condition of protein synthesis inhibition, where it showed a markedly increased interaction with Bcl-2. In turn, the fraction of Bax bound to Bcl-2 decreases in response to treatment, thereby indicating that Bim possibly promotes Bax release from the pro-survival protein Bcl-2. Overall, we demonstrated that Bim is required for the CA-4-induced cell death in the H460 lung cancer cell line via activation of the mitochondrial signalling pathway. Defining the contribution of Bim to the mechanism of apoptosis may offer some different clues in view of developing new strategies for chemotherapy with CA-4, underlining the relevance of the cytoskeleton integrity in the apoptotic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huang DC, Strasser A (2000) BH3-only proteins—essential initiators of apoptotic cell death. Cell 103:839–842

    Article  PubMed  CAS  Google Scholar 

  2. Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ (2001) BCL-2, BCL-X-L sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8:705–711

    Article  PubMed  CAS  Google Scholar 

  3. Lucken-Ardjomande S, Martinou JC (2005) Regulation of Bcl-2 proteins and of the permeability of the outer mitochondrial membrane. C R Biol 328:616–631

    Article  PubMed  CAS  Google Scholar 

  4. Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DC (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–403

    Article  PubMed  CAS  Google Scholar 

  5. O’Connor L, Strasser A, O’Reilly LA, Hausmann G, Adams JM, Cory S, Huang DC (1998) Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J 17:384–395

    Article  PubMed  Google Scholar 

  6. O’Reilly LA, Cullen L, Visvader J, Lindeman GJ, Print C, Bath ML, Huang DC, Strasser A (2000) The proapoptotic BH3-only protein Bim is expressed in hematopoietic, epithelial, neuronal, and germ cells. Am J Pathol 157:449–461

    Article  PubMed  Google Scholar 

  7. Puthalakath H, Huang DC, O’Reilly LA, King SM, Strasser A (1999) The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 3:287–296

    Article  PubMed  CAS  Google Scholar 

  8. Tong T, Ji J, Jin S, Li X, Fan W, Song Y, Wang M, Liu Z, Wu M, Zhan Q (2005) Gadd45a expression induces Bim dissociation from the cytoskeleton and translocation to mitochondria. Mol Cell Biol 25:4488–4500

    Article  PubMed  CAS  Google Scholar 

  9. Strasser A, Puthalakath H, Bouillet P, Huang DC, O’Connor L, O’Reilly LA, Cullen L, Cory S, Adams JM (2000) The role of Bim, a proapoptotic BH3-only member of the Bcl-2 family in cell-death control. Ann N Y Acad Sci 917:541–548

    Article  PubMed  CAS  Google Scholar 

  10. Lei K, Davis RJ (2003) JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 100:2432–2437

    Article  PubMed  CAS  Google Scholar 

  11. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  PubMed  CAS  Google Scholar 

  12. Puthalakath H, Strasser A (2002) Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 9:505–512

    Article  PubMed  CAS  Google Scholar 

  13. Dijkers PF, Medema RH, Lammers JW, Koenderman L, Coffer PJ (2000) Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol 10:1201–1204

    Article  PubMed  CAS  Google Scholar 

  14. Sunters A, Fernandez de Mattos S, Stahl M, Brosens J, Zoumpoulidou G, Saunders CA, Coffer PJ, Medema RH, Coombes RC, Lam EW (2003) FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem 278:49795–49805

    Article  PubMed  CAS  Google Scholar 

  15. Gilley J, Coffer PJ, Ham J (2003) FOXO transcription factors directly activate Bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol 162:613–622

    Article  PubMed  CAS  Google Scholar 

  16. Estève MA, Carré M, Braguer D (2007) Microtubules in apoptosis induction: are they necessary? Curr Cancer Drug Targets 7:713–729

    Article  PubMed  Google Scholar 

  17. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265

    Article  PubMed  CAS  Google Scholar 

  18. Mollinedo F, Gajate C (2003) Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 8:413–450

    Article  PubMed  CAS  Google Scholar 

  19. Jordan A, Hadfield JA, Lawrence NJ, McGown AT (1998) Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev 8:259–296

    Article  Google Scholar 

  20. Pettit GR, Cragg GM, Singh SB (1987) Antineoplastic agents, 122. Constituents of Combretum caffrum. J Nat Prod 50:386–391

    Article  PubMed  CAS  Google Scholar 

  21. Pettit GR, Singh SB, Boyd MR, Hamel E, Pettit RK, Schmidt JM, Hogan F (1995) Isolation and synthesis of combretastatins A-4, A-5, and A-6. J Med Chem 38:1666–1672

    Article  PubMed  CAS  Google Scholar 

  22. Islam MN, Iskander MN (2004) Microtubulin binding sites as target for developing anticancer agents. Mini Rev Med Chem 4:1077–1104

    PubMed  CAS  Google Scholar 

  23. Wehbe H, Kearney CM, Pinney KG (2005) Combretastatin A-4 resistance in H460 human lung carcinoma demonstrates distinctive alterations in beta-tubulin isotype expression. Anticancer Res 25:3865–3870

    PubMed  CAS  Google Scholar 

  24. Nabha SM, Mohammad RM, Dandashi MH, Coupaye-Gerard B, Aboukameel A, Pettit GR, Al-Katib AM (2002) Combretastatin-A4 prodrug induces mitotic catastrophe in chronic lymphocytic leukaemia cell line independent of caspase activation and poly (ADP-ribose) polymerase cleavage. Clin Cancer Res 8:2735–2741

    PubMed  CAS  Google Scholar 

  25. Vitale I, Antoccia A, Cenciarelli C, Crateri P, Meschini S, Arancia G, Pisano C, Tanzarella C (2007) Combretastatin CA-4 and combretastatin derivative induce mitotic catastrophe dependent on spindle checkpoint and caspase-3 activation in non-small cell lung. Apoptosis 12:155–166

    Article  PubMed  CAS  Google Scholar 

  26. Li R, Moudgil T, Ross HJ, Hu HM (2005) Apoptosis of non-small-cell lung cancer cell lines after paclitaxel treatment involves the BH3-only proapoptotic protein Bim. Cell Death Differ 12:292–303

    Article  PubMed  CAS  Google Scholar 

  27. Czernick M, Rieger A, Goping IS (2009) Bim is reversibly phosphorylated but plays a limited role in paclitaxel cytotoxicity of breast cancer cell lines. Biochem Biophys Res Commun 379:145–150

    Article  PubMed  CAS  Google Scholar 

  28. Cenciarelli C, Tanzarella C, Vitale I, Pisano C, Crateri P, Meschini S, Arancia G, Antoccia A (2008) The tubulin-depolymerising agent combretastatin-4 induces ectopic aster assembly and mitotic catastrophe in lung cancer cells H460. Apoptosis 13:659–669

    Article  PubMed  CAS  Google Scholar 

  29. Zhu YN, Swanson BJ, Wang M, Hildeman DA, Schaefer BC, Liu XQ, Suzuki H, Mihara K, Kappler J, Marrack P (2004) Constitutive association of the proapoptotic protein Bim with Bcl-2-related proteins on mitochondria in T cells. Proc Natl Acad Sci USA 101:7681–7686

    Article  PubMed  CAS  Google Scholar 

  30. Butt AJ, Roberts CG, Seawright AA, Oelrichs PB, Macleod JK, Liaw TY, Kavallaris M, Somers-Edgar TJ, Lehrbach GM, Watts CK, Sutherland RL (2006) A novel plant toxin, persin, with in vivo activity in the mammary gland, induces Bim-dependent apoptosis in human breast cancer cells. Mol Cancer Ther 5:2300–2309

    Article  PubMed  CAS  Google Scholar 

  31. Maginn EN, Browne PV, Hayden P, Vandenberghe E, MacDonagh B, Evans P, Goodyer M, Tewari P, Campiani G, Butini S, Williams DC, Zisterer DM, Lawler MP, McElligott AM (2011) PBOX-15, a novel microtubule targeting agent, induces apoptosis, upregulates death receptors, and potentiates TRAIL-mediated apoptosis in multiple myeloma cells. Br J Cancer 104:281–289

    Article  PubMed  CAS  Google Scholar 

  32. Erlacher M, Michalak EM, Kelly PN, Labi V, Niederegger H, Coultas L, Adams JM, Strasser A, Villunger A (2005) BH3-only proteins Puma and Bim are rate-limiting for gamma-radiation- and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood 106:4131–4138

    Article  PubMed  CAS  Google Scholar 

  33. Tan TT, Degenhardt K, Nelson DA, Beaudoin B, Nieves-Neira W, Bouillet P, Villunger A, Adams JM, White E (2005) Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Cancer Cell 7:227–238

    Article  PubMed  CAS  Google Scholar 

  34. Tozer GM, Kanthou C, Parkins CS, Hill SA (2002) The biology of the combretastatins as tumour vascular targeting agents. Int J Exp Pathol 83:21–38

    Article  PubMed  CAS  Google Scholar 

  35. Sunters A, Madureira PA, Pomeranz KM, Aubert M, Brosens JJ, Cook SJ, Burgering MT, Coombes RC, Lam EW (2006) Paclitaxel-induced nuclear translocation of Foxo3a in breast cancer cells is mediated by c-Jun NH2-Terminal kinase and Akt. Cancer Res 66:212–220

    Article  PubMed  CAS  Google Scholar 

  36. Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Gina Marcela Mendez is a PhD fellow at the Department of Biology, Università Roma Tre. We are grateful to Mr. Ed Kerman and Mrs. L. Mattace for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Antoccia.

Additional information

G. Mendez and C. Policarpi contributed equally to the article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendez, G., Policarpi, C., Cenciarelli, C. et al. Role of Bim in apoptosis induced in H460 lung tumor cells by the spindle poison Combretastatin-A4. Apoptosis 16, 940–949 (2011). https://doi.org/10.1007/s10495-011-0619-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0619-8

Keywords

Navigation