Skip to main content

Advertisement

Log in

An involvement of BDNF and PI3-K/Akt in the anti-apoptotic effect of memantine on staurosporine-evoked cell death in primary cortical neurons

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Memantine, a clinically used NMDA receptor antagonist possesses neuroprotective properties, but the exact mechanisms of its beneficial action on neuronal survival are poorly recognized. In the present study, some intracellular mechanisms of memantine effects on staurosporine-evoked cell death were investigated in primary cortical neurons. Memantine (0.1–2 μM) suppressed neuronal apoptosis evoked by staurosporine in 7 DIV cortical neurons, whereas other antagonists of NMDA receptor, MK-801 (1 μM) and AP-5 (100 μM) were ineffective. The anti-apoptotic effects of memantine were not connected with any changes in cytoplasmic calcium concentration or reactive oxygen species level. The immunoblot analysis showed that the staurosporine induced a decrease in p-Akt protein kinase level and that this effect was reversed by memantine treatment. Moreover, the PI3-K inhibitors, wortmannin and LY 294002 attenuated the anti-apoptotic action of memantine on staurosporine-induced cell damage. Furthermore, the ELISA studies showed increased cellular and released BDNF protein level after combined treatment with memantine and staurosporine. There was no effect of memantine on the activation and expression of other protein kinases involved in the mechanism of cellular survival, i.e. ERK1/2, JNK and GSK3-β. The obtained data suggest an NMDAR-independent action of memantine in attenuation of neuronal apoptosis and point to the engagement of BDNF and PI3-K/Akt pathway in these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Akt:

Protein kinase Akt, protein kinase B

AP-5:

2-Amino-5-phosphopentanoic acid

BDNF:

Brain-derived neurotrophic factor

CREB:

cAMP response element-binding protein

DIV:

Day in vitro

ERK1/2:

Extracellularly regulated protein kinase 1/2

GSK3-β:

Glycogen synthase kinase 3-β

JC-1:

5′,6,6′-Tetrachloro-1,1,3,3′-tetraethylbenzimidazolcarbocyanine iodide

JNK:

c-Jun NH(2)-terminal kinase

LDH:

Lactate dehydrogenase

MAPK:

Mitogen-activated protein kinase

MMP:

Mitochondrial membrane potential

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NMDA:

N-Methyl-d-aspartic acid

PI3-K:

Phosphatidylinositol-3 kinase

St:

Staurosporine

References

  1. Muller WE, Schroder HC, Ushijima H, Dapper J, Bormann J (1992) gp120 of HIV-1 induced apoptosis in rat cortical cell cultures: prevention by memantine. Eur J Pharmacol 226:209–214

    Article  PubMed  CAS  Google Scholar 

  2. Muller WE, Pergande G, Ushijima H, Schleger C, Kelve M, Perovic S (1996) Neurotoxicity in rat cortical cells caused by N-methyl-d-aspartate (NMDA) and gp120 of HIV: induction and pharmacological intervention. Prog Mol Subcell Biol 16:44–57

    PubMed  CAS  Google Scholar 

  3. Muller WE, Laplanche JL, Ushijima H, Schroder HC (2000) Novel approaches in diagnosis and therapy of Creutzfeldt-Jakob disease. Mech Agening Dev 116:193–218

    Article  CAS  Google Scholar 

  4. Parson CG, Danysz W, Quack G (1999) Memantine is a clinically well tolerated N-methyl-d-aspartate (NMDA) receptor antagonist–a review of preclinical data. Neuropharmacology 38:735–767

    Article  Google Scholar 

  5. Miguel-Hidalgo JJ, Alvarez XA, Cacabelos R, Quack G (2002) Neuroprotection by memantine against neurodegeneration induced by β-amyloid(1–40). Brain Res 958:210–221

    Article  PubMed  CAS  Google Scholar 

  6. Lipton SA (2004) Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx 1:101–110

    Article  PubMed  Google Scholar 

  7. Lipton SA (2005) The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Curr Alzheimer Res 2:155–165

    Article  PubMed  CAS  Google Scholar 

  8. Wenk GL, Parson CG, Danysz W (2006) Potential role of N-methyl -d-aspartate receptors as executors of neurodegeneration resulting from diverse insults: focus on memantine. Behav Pharmacol 17:411–424

    Article  PubMed  CAS  Google Scholar 

  9. Volbracht C, van Beek J, Zhu C, Blomgren K, Leist M (2006) Neuroprotective properties of memantine in different in vitro and in vivo models of excitotoxicity. Eur J NeuroSci 23:2611–2622

    Article  PubMed  Google Scholar 

  10. Tozzi A, Costa C, Di Filippo M, Tantucci M, Siliquini S, Belcastro V, Parnetti L, Picconi B, Calabresi P (2007) Memantine reduces neuronal dysfunctions triggered by in vitro ischemia and 3-nitropropionic acid. Exp Neurol 207:218–226

    Article  PubMed  CAS  Google Scholar 

  11. Chipana C, Torres I, Camarasa J, Pubill D, Escubedo E (2008) Memantine protects against amphetamine derivatives-induced neurotoxic damage in rodents. Neuropharmacology 54:1254–1263

    Article  PubMed  CAS  Google Scholar 

  12. Jantas D, Pytel M, Mozrzymas JW, Leskiewicz M, Regulska M, Antkiewicz-Michaluk L, Lason W (2008) The attenuating effect of memantine on staurosporine-, salsolinol- and doxorubicin-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neurochem Int 52:864–877

    Article  PubMed  CAS  Google Scholar 

  13. Parsons CG, Gilling KE, Jatzke C (2008) Memantine does not show intracellular block of the NMDA receptor channel. Eur J Pharmacol 587:99–103

    Article  PubMed  CAS  Google Scholar 

  14. Song MS, Rauw G, Baker GB, Kar S (2008) Memantine protects rat cortical cultured neurons against beta-amyloid-induced toxicity by attenuating tau phosphorylation. Eur J NeuroSci 28:1989–2002

    Article  PubMed  CAS  Google Scholar 

  15. Rammes G, Rupprecht R, Ferrari U, Zieglgänsberger W, Parsons CG (2001) The NMDA receptor channel blockers memantine, MRZ 2/579 and other amino-alkyl-cyclohexanes also antagonise 5HT3 receptor currents in HEK-293 and N1E–115 cells in a non-competitive manner. Neurosci Lett 306:81–84

    Article  PubMed  CAS  Google Scholar 

  16. Ovalle S, Andreu F, Perez MP, Zamanillo D, Guitart X (2002) Effect of the novel sigma1 receptor ligand and putative antipsychotic E-5842 on BDNF mRNA expression in the rat brain. NeuroReport 13:2345–2348

    Article  PubMed  CAS  Google Scholar 

  17. Peeters M, Romieu P, Maurice T, Su TP, Maloteaux JM, Hermans E (2004) Involvement of the sigma 1 receptor in the modulation of dopaminergic transmission by amantadine. Eur J NeuroSci 19:2212–2220

    Article  PubMed  Google Scholar 

  18. Aracava Y, Pereira EF, Maelicke A, Albuquerque EX (2005) Memantine blocks alpha7* nicotinic acetylcholine receptors more potently than N-methyl-d-aspartate receptors in rat hippocampal neurons. J Pharmacol Exp Ther 312:1195–1205

    Article  PubMed  CAS  Google Scholar 

  19. Chipana C, Camarasa J, Pubill D, Escubedo E (2008) Memantine prevents MDMA-induced neurotoxicity. Neurotoxicology 29:179–183

    Article  PubMed  CAS  Google Scholar 

  20. Jantas-Skotniczna D, Kajta M, Lason W (2006) Memantine attenuates staurosporine-induced activation of caspase-3 and LDH release in mouse primary neuronal cultures. Brain Res 1069:145–153

    Article  PubMed  CAS  Google Scholar 

  21. Kajta M, Trotter A, Lasoń W, Beyer C (2005) Effect of NMDA on staurosporine-induced activation of caspase-3 and LDH release in mouse neocortical and hippocampal cells. Brain Res Dev Brain Res 160:40–52

    Article  PubMed  CAS  Google Scholar 

  22. Williams K, Russell SL, Shen YM, Molinoff PB (1993) Developmental switch in the expression of NMDA receptors occurs in vivo and in vitro. Neuron 10:267–278

    Article  PubMed  CAS  Google Scholar 

  23. Prehn JHM, Jordan J, Ghadge GD, Preis E, Galindo MF, Roos RP, Krieglstein J, Miller RJ (1997) Ca2+ and reactive oxygen species in staurosporine-induced neuronal apoptosis. J Neurochem 68:1679–1685

    Article  PubMed  CAS  Google Scholar 

  24. Osakada F, Hashino A, Kume T, Katsuki H, Kaneko S, Akaike A (2004) α-Tocotrienol provides the most potent neuroprotection among vitamin E analogs on cultured striatal neurons. Neuropharmacology 47:904–915

    Article  PubMed  CAS  Google Scholar 

  25. Lupp A, Kerst S, Karge E (2003) Evaluation of possible pro- or antioxidative properites and of the interaction capacity with the microsomal cytochrome P450 system of different NMDA-receptor ligands and of taurine in vitro. Exp Toxicol Pathol 54:441–448

    Article  PubMed  CAS  Google Scholar 

  26. Marvanova M, Lakso M, Pirhonen J, Nawa H, Wong G, Castren E (2001) The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol Cell Neurosci 18:247–258

    Article  PubMed  CAS  Google Scholar 

  27. Meisner F, Scheller C, Kneitz S, Sopper S, Neuen-Jacob E, Riederer P, Meulen VT, Koutsilieri E (2007) Memantine upregulates BDNF and prevents dopamine deficits in SIV-infected macaques: a novel pharmacological action of memantine. Neuropsychopharmacology 33:2228–2236

    Article  PubMed  CAS  Google Scholar 

  28. Brewer GJ (1995) Serum-free B27/neurobasal medium supports differentiated growth of neurones from the striatum, substantia nigra, septum, cerebral cortex, cerebellum and dentate gyrus. J Neurosci Res 42:674–683

    Article  PubMed  CAS  Google Scholar 

  29. Jantas D, Lason W (2009) Protective effect of memantine against doxorubicin toxicity in primary neuronal cell cultures: influence a development stage. Neurotox Res 15:24–37. doi:10.1007/s12640-009-9002-8

    PubMed  CAS  Google Scholar 

  30. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  PubMed  CAS  Google Scholar 

  31. Hemstapat K, Smith MT, Monteith GR (2004) Measurement of intracellular Ca2 + in cultured rat embryonic hippocampal neurons using a fluorescence microplate reader: potential application to biomolecular screening. J Pharmacol Toxicol Methods 49:81–87

    Article  PubMed  CAS  Google Scholar 

  32. Balkowiec A, Katz DM (2000) Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ. J Neurosci 20:7417–7423

    PubMed  CAS  Google Scholar 

  33. Budd SL, Tenneti L, Lishnak T, Lipton SA (2000) Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons. Proc Natl Acad Sci USA 97:6161–6166

    Article  PubMed  CAS  Google Scholar 

  34. Williams AJ, Dave JR, Lu XM, Ling L, Tortella FC (2002) Selective NR2B NMDA receptor antagonist are protective against staurosporine-induced apoptosis. Eur J Pharmacol 452:135–136

    Article  PubMed  CAS  Google Scholar 

  35. Dave JR, Williams AJ, Moffett JR, Koenig ML, Tortella FC (2003) Studies of neuronal apoptosis in primary forebrain cultures: neuroprotective/anti-apoptotic action of NR2B NMDA antagonists. Neurotox Res 5:255–264

    Article  PubMed  Google Scholar 

  36. Church J, Shacklock JA, Baimbridge KG (1991) Dextromethorphan and phencyclidine receptor ligands: differential effects on K(+)- and NMDA-evoked increases in cytosolic free Ca2+ concentration. Neurosci Lett 124:232–234

    Article  PubMed  CAS  Google Scholar 

  37. Csernansky CA, Canzoniero LM, Sensi SL, Yu SP, Choi DW (1994) Delayed application of aurintricarboxylic acid reduces glutamate-induced cortical neuronal injury. J Neurosci Res 38:101–108

    Article  PubMed  CAS  Google Scholar 

  38. Reynolds IJ, Hastings TG (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci 5:3318–3327

    Google Scholar 

  39. Zhu Y, Hoell P, Ahlemeyer B, Krieglstein J (2006) PTEN: a crucial mediator of mitochondria-dependent apoptosis. Apoptosis 11:197–207

    Article  PubMed  CAS  Google Scholar 

  40. Krohn AJ, Wahlbrink T, Prehn JH (1999) Mitochondrial depolarization is not required for neuronal apoptosis. J Neurosci 19:7394–7404

    PubMed  CAS  Google Scholar 

  41. Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and -independent control of neuronal survival by the PI3 K-Akt signaling pathway. Curr Opin Neurobiol 11:297–305

    Article  PubMed  CAS  Google Scholar 

  42. Hetman M, Gozdz A (2004) Role of extracellular signal regulated kinases 1 and 2 in neuronal survival. Eur J Biochem 271:2050–2055

    Article  PubMed  CAS  Google Scholar 

  43. Papadia S, Soriano FX, Léveillé F, Martel MA, Dakin KA, Hansen HH, Kaindl A, Sifringer M, Fowler J, Stefovska V, McKenzie G, Craigon M, Corriveau R, Ghazal P, Horsburgh K, Yankner BA, Wyllie DJ, Ikonomidou C, Hardingham GE (2008) Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci 11:476–487

    Article  PubMed  CAS  Google Scholar 

  44. Lipton SA (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 5:160–170

    Article  PubMed  CAS  Google Scholar 

  45. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5:405–414

    PubMed  CAS  Google Scholar 

  46. Hardingham GE, Bading H (2002) Coupling of extrasynaptic NMDA receptors to a CREB shut-off pathway is developmentally regulated. Biochim Biophys Acta 1600:148–153

    PubMed  CAS  Google Scholar 

  47. Zhu Y, Hoell P, Ahlemeyer B, Sure U, Bertalanffy H, Krieglstein J (2007) Implication of PTEN in production of reactive oxygen species and neuronal death in in vitro models of stroke and Parkinson’s disease. Neurochem Int 50:507–516

    Article  PubMed  CAS  Google Scholar 

  48. Hetman M, Xia Z (2000) Signaling pathways mediating anti-apoptotic action of neurotrophins. Acta Neurobiol Exp (Wars) 60:531–545

    CAS  Google Scholar 

  49. Kharebava G, Makonchuk D, Kalita KB, Zheng JJ, Hetman M (2008) Requirement of 3-phosphoinositide-dependent protein kinase-1 for BDNF-mediated neuronal survival. J Neurosci 28:11409–11420

    Article  PubMed  CAS  Google Scholar 

  50. Hetman M, Kanning K, Cavanaugh JE, Xia Z (1999) Neuroprotection by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. J Biol Chem 274:22569–22580

    Article  PubMed  CAS  Google Scholar 

  51. Klumpp S, Kriha D, Bechmann G, Maassen A, Maier S, Pallast S, Hoell P, Krieglstein J (2006) Phosphorylation of the growth factors bFGF, NGF and BDNF: a prerequisite for their biological activity. Neurochem Int 48:131–137

    Article  PubMed  CAS  Google Scholar 

  52. Nguyen N, Lee SB, Lee YS, Lee KH, Ahn JY (2008) Neuroprotection by NGF and BDNF against neurotoxin-exerted apoptotic death in neural stem cells are mediated through Trk receptors, activating PI3-kinase and MAPK pathways. Neurochem Res 1:20 [Epub ahead of print]

    Google Scholar 

  53. Luo HR, Hattori H, Hossain MA, Hester L, Huang Y, Lee-Kwon W, Donowitz M, Nagata E, Snyder SH (2003) Akt as a mediator of cell death. Proc Natl Acad Sci USA 100:11712–11717

    Article  PubMed  CAS  Google Scholar 

  54. Chin PC, Majdzadeh N, D’Mello SR (2005) Inhibition of GSK3beta is a common event in neuroprotection by different survival factors. Brain Res Mol Brain Res 137:193–201

    Article  PubMed  CAS  Google Scholar 

  55. De Sarno P, Bijur GN, Zmijewska AA, Li X, Jope RS (2006) In vivo regulation of GSK3 phosphorylation by cholinergic and NMDA receptors. Neurobiol Aging 27:413–422

    Article  PubMed  CAS  Google Scholar 

  56. Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809

    Article  PubMed  CAS  Google Scholar 

  57. Lee ST, Chu K, Park JE, Kang L, Ko SY, Jung KH, Kim M (2006) Memantine reduces striatal cell death with decreasing calpain level in 3-nitropropionic model of Huntington’s disease. Brain Res 1118:199–207

    Article  PubMed  CAS  Google Scholar 

  58. Zhu Y, Yang GY, Ahlemeyer B, Pang L, Che XM, Culmsee C, Klumpp S, Krieglstein J (2002) Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage. J Neurosci 22:3898–3909

    PubMed  CAS  Google Scholar 

  59. Chen Q, Cui J, Zhang Y, Yu LC (2008) Prolonged morphine application modulates Bax and Hsp70 levels in primary rat neurons. Neurosci Lett 441:311–314

    Article  PubMed  CAS  Google Scholar 

  60. Chen YR, Tan TH (2000) The c-Jun N-terminal kinase pathway and apoptotic signaling (review). Int J Oncol 16:651–662

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by grant No. 1874/P01/2006/31 from the State Committee for Scientific Research, Warsaw, Poland. We kindly thank Ms Barbara Korzeniak for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jantas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jantas, D., Szymanska, M., Budziszewska, B. et al. An involvement of BDNF and PI3-K/Akt in the anti-apoptotic effect of memantine on staurosporine-evoked cell death in primary cortical neurons. Apoptosis 14, 900–912 (2009). https://doi.org/10.1007/s10495-009-0370-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0370-6

Keywords

Navigation