Skip to main content
Log in

Caspase-activated DNase (CAD)-independent oligonucleosomal DNA fragmentation in chronic myeloid leukaemia cells; a requirement for serine protease and Mn2+-dependent acidic endonuclease activity

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

We have previously reported that the pro-apoptotic pyrrolobenzoxazepine, PBOX-6, induces apoptosis in chronic myelogenous leukaemia (CML) cells which is accompanied by oligonucleosomal DNA fragmentation. In this study we show that PBOX-6-induced oligonucleosomal DNA fragmentation occurs in the absence of caspase and CAD activation in CML cells. Dissection of the signalling pathway has revealed that induction of apoptosis requires the upstream activation of a trypsin-like serine protease that promotes the phosphorylation and inactivation of anti-apoptotic Bcl-2. In addition, in this system chymotrypsin-like serine proteases are dispensable for high molecular weight DNA fragmentation, however are required for the activation of a relatively small manganese-dependent acidic endonuclease that is responsible for oligonucleosomal fragmentation of DNA. Furthermore, we demonstrate mitochondrial involvement during PBOX-6-induced apoptosis and suggest the existence of unidentified mitochondrial effectors of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26, 239–257

    PubMed  CAS  Google Scholar 

  2. Donovan M, Cotter TG (2004) Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. BBA 1644(2–3):133–147

    PubMed  CAS  Google Scholar 

  3. Vermeulen K, Van Bockstaele DR, Berneman ZN (2005) Apoptosis: mechanisms and relevance in cancer. Ann Haematol 84:627–639

    Article  CAS  Google Scholar 

  4. Reed RC, Pellecchia M Apoptosis-based therapies for hematologic malignancies. Blood 106(2):408–418

  5. Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23(16):2861–2874. (Review)

    Article  PubMed  CAS  Google Scholar 

  6. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86(1):147–157

    Article  PubMed  CAS  Google Scholar 

  7. Susin SA, Lorenzo HK, Zamzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397(6718):441–446

    Article  PubMed  CAS  Google Scholar 

  8. Verhagen AM, Ekert PG, Pakusch M et al (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102(1):43–53

    Article  PubMed  CAS  Google Scholar 

  9. Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412(6842):95–99

    Article  PubMed  CAS  Google Scholar 

  10. Verhagen AM, Silke J, Ekert PG et al (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277(1):445–454 (Epub 2001 Oct 16)

    Article  PubMed  CAS  Google Scholar 

  11. Choi WS, Lee EH, Chung CW et al (2001) Cleavage of Bax is mediated by caspase-dependent or -independent calpain activation in dopaminergic neuronal cells: protective role of Bcl-2. J Neurochem 77(6):1531–1541

    Article  PubMed  CAS  Google Scholar 

  12. Mathiasen IS, Jaattela M (2002) Triggering caspase-independent cell death to combat cancer. Trends Mol Med 8(5):212–220 (Review)

    Article  PubMed  CAS  Google Scholar 

  13. Stenson-Cox C, FitzGerald U, Samali A (2003) In the cut and thrust of apoptosis, serine proteases come of age. Biochem Pharmacol 66(8):1469–1474 (Review)

    Article  PubMed  CAS  Google Scholar 

  14. Hegde R, Srinivasula SM, Zhang Z et al (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277(1):432–438 (Epub 2001 Oct 17)

    Article  PubMed  CAS  Google Scholar 

  15. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284(5756):555–556

    Article  PubMed  CAS  Google Scholar 

  16. Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89(2):175–184

    Article  PubMed  CAS  Google Scholar 

  17. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391(6662):43–50

    Article  PubMed  CAS  Google Scholar 

  18. Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391(6662):96–99

    Article  PubMed  CAS  Google Scholar 

  19. Samejima K, Tone S, Earnshaw WC (2001) CAD/DFF40 nuclease is dispensable for high molecular weight DNA cleavage and stage I chromatin condensation in apoptosis. J Biol Chem 276(48):45427–45432 (Epub 2001 Sep 27)

    Article  PubMed  CAS  Google Scholar 

  20. Donovan M, Cotter TG (2002) Caspase-independent photoreceptor apoptosis in vivo and differential expression of apoptotic protease activating factor-1 and caspase-3 during retinal development. Cell Death Differ 9(11):1220–1231

    Article  PubMed  CAS  Google Scholar 

  21. van Loo G, Schotte P, van Gurp M et al (2001) Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death Differ 8(12):1136–1142

    Article  PubMed  CAS  Google Scholar 

  22. Yakovlev AG, Di X, Movsesyan V et al (2001) Presence of DNA fragmentation and lack of neuroprotective effect in DFF45 knockout mice subjected to traumatic brain injury. Mol Med 7(3):205–216

    PubMed  CAS  Google Scholar 

  23. Kawabata H, Anzai N, Masutani H et al (1997) Mg2+- or Mn2+-dependent endonuclease activities of human myeloid leukemia cells capable of producing nucleosomal-size DNA fragmentation. Biochem Biophys Res Commun 233(1):133–138

    Article  PubMed  CAS  Google Scholar 

  24. Cohen GM, Sun XM, Fearnhead H et al (1994) Formation of large molecular weight fragments of DNA is a key committed step of apoptosis in thymocytes. J Immunol 153(2):507–516

    PubMed  CAS  Google Scholar 

  25. Khodarev NN, Ashwell JD (1996) An inducible lymphocyte nuclear Ca2+/Mg (2+)-dependent endonuclease associated with apoptosis. J Immunol 156(3):922–931

    PubMed  CAS  Google Scholar 

  26. Assuncao Guimaraes C, Linden R (2004) Programmed cell deaths. Apoptosis and alternative deathstyles. Eur J Biochem 271(9):1638–1650

    Article  PubMed  Google Scholar 

  27. Drucker BJ, Tamura S, Buchdunger E et al (1996) Effects of a selective inhibitor of the ABL tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2:561–566

    Article  Google Scholar 

  28. Zisterer DM, Campiani G, Nacci V, Williams DC (2000) Pyrrolo-1,5-benzoxazepines induce apoptosis in HL-60, Jurkat, and Hut-78 cells: a new class of apoptotic agents. J Pharmacol Exp Ther 293(1):48–59

    PubMed  CAS  Google Scholar 

  29. Mc Gee MM, Campiani G, Ramunno A et al (2001) Pyrrolo-1,5-benzoxazepines induce apoptosis in chronic myelogenous leukemia (CML) cells by bypassing the apoptotic suppressor Bcr-Abl. J Pharmacol Exp Ther 296(1):31–40

    PubMed  CAS  Google Scholar 

  30. Mc Gee MM, Hyland E, Campiani G, Ramunno A, Nacci V, Zisterer DM (2002) Caspase-3 is not essential for DNA fragmentation in MCF-7 cells during apoptosis induced by the pyrrolo-1,5-benzoxazepine, PBOX-6. FEBS Lett 515(1–3):66–70

    Article  PubMed  CAS  Google Scholar 

  31. Mc Gee MM, Campiani G, Ramunno A et al (2002) Activation of the c-Jun NH2 terminal kinase (JNK) signaling pathway is essential during PBOX-6-induced apoptosis in chronic myelogenous leukemia (CML) cells. J Biol Chem 277(21):18383–18389

    Article  PubMed  CAS  Google Scholar 

  32. Mc Gee MM, Greene LM, Ledwidge S et al (2004) Selective induction of apoptosis by PBOX-6 in Leukemia cells occurs via the JNK dependent phosphorylation and inactivation of Bcl-2 and Bcl-XL. J Pharmacol Exp Ther 310(3):1084–1095

    Article  PubMed  CAS  Google Scholar 

  33. Giannakis C, Forbes IJ, Zalewski PD (1991) Ca2+ /Mg2+ - dependent nuclease; tissue distribution, relationship to inter-nucleosomal DNA fragmentation and inhibition by Zn2+. Biochem Biophys. Res Commun 181:915

    CAS  Google Scholar 

  34. Murn J, Urleb U, Mlinaric-Rascan I (2004) Internucleosomal DNA cleavage in apoptotic WEHI 231 cells is mediated by a chymotrypsin-like protease. Genes Cells 9(11):1103–1111

    Article  PubMed  CAS  Google Scholar 

  35. Dong Z, Saikumar P, Patel Y, Weinberg JM, Venkatachalam MA (2000) Serine protease inhibitors suppress cytochrome c-mediated caspase-9 activation and apoptosis during hypoxia-reoxygenation. Biochem J 347(Pt 3):669–677

    Article  PubMed  CAS  Google Scholar 

  36. Fearnhead HO, Rivett AJ, Dinsdale D, Cohen GM (1995) A pre-existing protease is a common effector of thymocyte apoptosis mediated by diverse stimuli. FEBS Lett 357(3):242–246

    Article  PubMed  CAS  Google Scholar 

  37. Rideout HJ, Zang E, Yeasmin M et al (2001) Inhibitors of trypsin-like serine proteases prevent DNA damage-induced neuronal death by acting upstream of the mitochondrial checkpoint and of p53 induction. Neuroscience 107(2):339–352

    Article  PubMed  CAS  Google Scholar 

  38. Gong B, Chen Q, Endlich B, Mazumder S, Almasan A (1999) Ionizing radiation-induced, Bax-mediated cell death is dependent on activation of cysteine and serine proteases. Cell Growth Differ 10(7):491–502

    PubMed  CAS  Google Scholar 

  39. Huang Y, Sheikh MS, Fornace AJ Jr, Holbrook NJ (1999) Serine protease inhibitor TPCK prevents Taxol-induced cell death and blocks c-Raf-1 and Bcl-2 phosphorylation in human breast carcinoma cells. Oncogene 18(23):3431–3439

    Article  PubMed  CAS  Google Scholar 

  40. Yamada M, Hirasawa A, Shiojima S, Tsujimoto G (2003) Granzyme A mediates glucocorticoid-induced apoptosis in leukemia cells. FASEB J 17(12):1712–1714

    Article  PubMed  CAS  Google Scholar 

  41. Blink E, Maianski NA, Alnemri ES, Zervos AS, Roos D, Kuijpers TW (2004) Intramitochondrial serine protease activity of Omi/HtrA2 is required for caspase-independent cell death of human neutrophils. Cell Death Differ 11(8):937–939

    Article  PubMed  CAS  Google Scholar 

  42. Cilenti L, Lee Y, Hess S et al (2003) Characterization of a novel and specific inhibitor for the pro-apoptotic protease Omi/HtrA2. J Biol Chem 278(13):11489–11494 (Epub 2003 Jan 15)

    Article  PubMed  CAS  Google Scholar 

  43. Widlak P, Garrard WT (2001) Ionic and cofactor requirements for the activity of the apoptotic endonuclease DFF40/CAD. Mol Cell Biochem 218(1–2):125–130

    Article  PubMed  CAS  Google Scholar 

  44. Nagata S (2005) DNA degradation in development and programmed cell death. Annu Rev Immunol 23:853–875 (Review)

    Article  PubMed  CAS  Google Scholar 

  45. Kawane K, Fukuyama H, Yoshida H et al (2003) Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation. Nat Immunol 4(2):138–144

    Article  PubMed  CAS  Google Scholar 

  46. Hughes FM Jr, Evans-Storms RB, Cidlowski JA (1998) Evidence that non-caspase proteases are required for chromatin degradation during apoptosis. Cell Death Differ 5(12):1017–1027

    Article  PubMed  CAS  Google Scholar 

  47. Sane AT, Bertrand R (1998) Distinct steps in DNA fragmentation pathway during camptothecin-induced apoptosis involved caspase-, benzyloxycarbonyl- and N-tosyl-L-phenylalanylchloromethyl ketone-sensitive activities. Cancer Res 58(14):3066–3072

    PubMed  CAS  Google Scholar 

  48. Eitel K, Wagenknecht B, Weller M (1999) Inhibition of drug-induced DNA fragmentation, but not cell death, of glioma cells by non-caspase protease inhibitors. Cancer Lett 142(1):11–16

    Article  PubMed  CAS  Google Scholar 

  49. Widlak P, Li P, Wang X, Garrard WT (2000) Cleavage preferences of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease) on naked DNA and chromatin substrates. J Biol Chem 275(11):8226–8232

    Article  PubMed  CAS  Google Scholar 

  50. Cande C, Vahsen N, Kouranti I et al (2004) AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene 23(8):1514–1521

    Article  PubMed  CAS  Google Scholar 

  51. Widlak P, Li LY, Wang X, Garrard WT (2001) Action of recombinant human apoptotic endonuclease G on naked DNA and chromatin substrates: cooperation with exonuclease and DNase I. J Biol Chem 276(51):48404–48409

    PubMed  CAS  Google Scholar 

  52. Altairac S, Wright SC, Courtois Y, Torriglia A (2003) L-DNase II activation by the 24 kDa apoptotic protease (AP24) in TNFalpha-induced apoptosis. Cell Death Differ 10(9):1109–1111

    Article  PubMed  CAS  Google Scholar 

  53. Nagata S, Nagase H, Kawane K, Mukae N, Fukuyama H (2003) Degradation of chromosomal DNA during apoptosis. Cell Death Differ 10(1):108–116 (Review)

    Article  PubMed  CAS  Google Scholar 

  54. Arnoult D, Gaume B, Karbowski M, Sharpe JC, Cecconi F, Youle RJ (2003) Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J 22(17):4385–4399

    Article  PubMed  CAS  Google Scholar 

  55. Liu X, Li P, Widlak P et al (1998) The 40-Kda subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci USA 95:8461–8466

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Mc Gee.

Additional information

This work was supported by the Irish Research Council for Science, Technology and Engineering (IRCSET).

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGrath, L.B., Onnis, V., Campiani, G. et al. Caspase-activated DNase (CAD)-independent oligonucleosomal DNA fragmentation in chronic myeloid leukaemia cells; a requirement for serine protease and Mn2+-dependent acidic endonuclease activity. Apoptosis 11, 1473–1487 (2006). https://doi.org/10.1007/s10495-006-8968-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-8968-4

Keywords

Navigation