Skip to main content

Advertisement

Log in

Mechanisms and interventions in peritoneal fibrosis

  • Review Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Peritoneal dialysis (PD) is an attractive treatment for patients with end-stage kidney disease (ESKD). However, long-term peritoneal dialysis is associated with development of functional and structural alterations of the peritoneal membrane. Several factors are implicated in the development of peritoneal fibrosis in PD patients. Inflammatory cytokines, which are induced in the peritoneal cavity during peritonitis, may also induce chronic inflammation and fibrosis. Transforming growth factor β1 (TGF-β1) is generally considered to play an important role in peritoneal fibrosis. The objective of this review is to summarize the mechanisms of peritoneal fibrosis using in vitro and in vivo studies, and the current status and future prospects of interventions in the peritoneal fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, et al. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol. 2002;13:470–9.

    PubMed  Google Scholar 

  2. Plum J, Hermann S, Fussholler A, Schoenicke G, Donner A, Rohrborn A, et al. Peritoneal sclerosis in peritoneal dialysis patients related to dialysis settings and peritoneal transport properties. Kidney Int. 2001;59(Suppl 78):S42–7.

    Article  Google Scholar 

  3. Devuyst O, Topley N, Williams JD. Morphological and functional changes in the dialysed peritoneal cavity: impact of more biocompatible solutions. Nephrol Dial Transpl. 2002;17(Suppl 3):12–5.

    Article  CAS  Google Scholar 

  4. Naiki Y, Maeda Y, Matsuo K, Yonekawa S, Sakaguchi M, Iwamoto I, et al. Involvement of TGF-β signal for peritoneal sclerosing in continuous ambulatory peritoneal dialysis. J Nephrol. 2003;16:95–102.

    PubMed  CAS  Google Scholar 

  5. Osada S, Hamada C, Shimaoka T, Hayashi K, Horikoshi S, Tomino Y. Alteration in proteoglycan components and histopathology of the peritoneum in uraemic and peritoneal dialysis (PD) patients. Nephrol Dial Transpl. 2009;24:3504–12.

    Article  CAS  Google Scholar 

  6. Kang DH, Hong YS, Lim HJ, Choi JH, Han DS, Yoon KI. High glucose solution and spent dialysate stimulate the synthesis of transforming growth factor-b1 of human peritoneal mesothelial cells: effect of cytokine costimulation. Perit Dial Int. 1999;19:221–30.

    PubMed  CAS  Google Scholar 

  7. Margetts PJ, Kolb M, Galt T, Hoff CM, Shockley TR, Gauldie J. Gene transfer of transforming growth factor-β1 to the rat peritoneum: effects on membrane function. J Am Soc Nephrol. 2001;12:2029–39.

    PubMed  CAS  Google Scholar 

  8. Witowski J, Wisniewska J, Korybalska K, Bender TO, Breborowicz A, Gahl GM, et al. Prolonged exposure to glucose degradation products impairs viability and function of human peritoneal mesothelial cells. J Am Soc Nephrol. 2001;12:2434–41.

    PubMed  CAS  Google Scholar 

  9. Kim YS, Kim BC, Song CY, Hong HK, Moon KC, Lee HS. Advanced glycosylation end products stimulate collagen mRNA synthesis in mesangial cells mediated by protein kinase C and transforming growth factor-beta. J Lab Clin Med. 2001;138:59–68.

    Article  PubMed  CAS  Google Scholar 

  10. Honda K, Nitta K, Horita S, Yamura W, Nihei H, Nagai R, et al. Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultra-filtration. Nephrol Dial Transpl. 1999;14:1541–9.

    Article  CAS  Google Scholar 

  11. Combet S, Ferrier ML, Van Landschoot M, Stoenoiu M, Moulin P, Miyata T, et al. Chronic uremia induces permeability changes, increased nitric oxide synthase expression, and structural modifications in the peritoneum. J Am Soc Nephrol. 2001;12:2146–57.

    PubMed  CAS  Google Scholar 

  12. Eddy AA. Plasminogen activator inhibitor-1 and the kidney. Am J Physiol Renal Physiol. 2002;283:F209–20.

    PubMed  CAS  Google Scholar 

  13. Rougier JP, Guia S, Hagege J, Nguyen G, Ronco PM. PAI-1 secretion and matrix deposition in human peritoneal mesothelial cell cultures: transcriptional regulation by TGF-β1. Kidney Int. 1998;54:87–98.

    Article  PubMed  CAS  Google Scholar 

  14. Moussad EE, Brigstock DR. Connective tissue growth factor: what’s in a name? Mol Genet Metab. 2000;71:276–92.

    Article  PubMed  CAS  Google Scholar 

  15. Noh H, Ha H, Yu MR, Kim YO, Kim JH, Lee HB. Angiotensin II mediates high glucose-induced TGF-β1 and fibronectin upregulation in HPMC through reactive oxygen species. Perit Dial Int. 2005;25:38–47.

    PubMed  CAS  Google Scholar 

  16. Kiribayashi K, Masaki T, Naito T, Ogawa T, Ito T, Yorioka N, et al. Angiotensin II induces fibronectin expression in human peritoneal mesothelial cells via ERK1/2 and p38 MAPK. Kidney Int. 2005;67:1126–35.

    Article  PubMed  CAS  Google Scholar 

  17. Yung S, Liu ZH, Lai KN, Li LS, Chan TM. Emodin ameliorates glucose-induced morphologic abnormalities and synthesis of transforming growth factor β1 and fibronectin by human peritoneal mesothelial cells. Perit Dial Int. 2001;21(Suppl 3):S41–7.

    PubMed  Google Scholar 

  18. Chan TM, Leung JK, Tsang RC, Liu ZH, Li LS, Yung S. Emodin ameliorates glucose-induced matrix synthesis in human peritoneal mesothelial cells. Kidney Int. 2003;64:519–33.

    Article  PubMed  CAS  Google Scholar 

  19. Margetts PJ, Gyorffy S, Kolb M, Yu L, Hoff CM, Holmes CJ, et al. Antiangiogenic and antifibrotic gene therapy in a chronic infusion model of peritoneal dialysis in rats. J Am Soc Nephrol. 2002;13:721–8.

    PubMed  CAS  Google Scholar 

  20. Williams JD, Topley N, Craig KJ, Mackenzie RK, Pischetsrieder M, Lage C, et al. The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (Balance) on the peritoneal membrane. Kidney Int. 2004;66:408–18.

    Article  PubMed  Google Scholar 

  21. Bajo MA, Selgas R, Castro MA, del Peso G, Diaz C, Sanchez-Tomero JA, et al. Icodextrin effluent leads to a greater proliferation than glucose effluent of human mesothelial cells studied ex vivo. Perit Dial Int. 2000;20:742–7.

    PubMed  CAS  Google Scholar 

  22. Le Poole CY, Welten AG, Weijmer MC, Valentijn RM, van Ittersum FJ, ter Wee PM. Initiating CAPD with a regimen low in glucose and glucose degradation products, with icodextrin and amino acids (NEPP) is safe and efficacious. Perit Dial Int. 2005;25(Suppl 3):S64–8.

    PubMed  CAS  Google Scholar 

  23. Fukuyama J, Ichikawa K, Miyazawa K, Hamano S, Shibata N, Ujiie A. Tranilast suppresses intimal hyperplasia in the balloon injury model and cuff treatment model in rabbits. Jpn J Pharmacol. 1996;70:321–7.

    Article  PubMed  CAS  Google Scholar 

  24. Fukuyama J, Ichikawa K, Hamano S, Shibata N. Tranilast suppresses the vascular intimal hyperplasia after balloon injury in rabbits fed on a high-cholesterol diet. Eur J Pharmacol. 1996;318:327–32.

    Article  PubMed  CAS  Google Scholar 

  25. Kyuden Y, Ito T, Masaki T, Yorioka N, Kohno N. TGF-β1 induced by high glucose is controlled by angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker on cultured human peritoneal mesothelial cells. Perit Dial Int. 2005;25:483–91.

    PubMed  CAS  Google Scholar 

  26. Duman S, Gunal AI, Sen S, Asci G, Ozkahya M, Terzioglu E, et al. Does enalapril prevent peritoneal fibrosis induced by hypertonic (3.86%) peritoneal dialysis solution? Perit Dial Int. 2001;21:219–24.

    PubMed  CAS  Google Scholar 

  27. Duman S, Sen S, Duman C, Oreopoulos DG. Effect of valsartan versus lisinopril on peritoneal sclerosis in rats. Int J Artif Organs. 2005;28:156–63.

    PubMed  CAS  Google Scholar 

  28. Giri SN, Biring I, Nguyen T, Wang O, Hyde DM. Abrogation of bleomycin-induced lung fibrosis by nitric oxide synthase inhibitor, aminoguanidine in mice. Nitric Oxide. 2002;7:109–18.

    Article  PubMed  CAS  Google Scholar 

  29. Zareie M, Tangelder GJ, ter Wee PM, Hekking LH, van Lambalgen AA, Keuning ED, et al. Beneficial effects of aminoguanidine on peritoneal microcirculation and tissue remodelling in a rat model of PD. Nephrol Dial Transpl. 2005;20:2783–92.

    Article  CAS  Google Scholar 

  30. Tanimoto M, Gohda T, Kaneko S, Hagiwara S, Murakoshi M, Aoki T, Yamada K, Ito T, Matsumoto M, Horikoshi S, Tomino Y. Effect of pyridoxamine (K-163), an inhibitor of advanced glycation end products, on type 2 diabetic nephropathy in KK-A(y)/Ta mice. Metabolism. 2007;56:160–7.

    Article  PubMed  CAS  Google Scholar 

  31. Kakuta T, Tanaka R, Satoh Y, Izuhara Y, Inagi R, Nangaku M, et al. Pyridoxamine improves functional, structural, and biochemical alterations of peritoneal membranes in uremic peritoneal dialysis rats. Kidney Int. 2005;68:1326–36.

    Article  PubMed  CAS  Google Scholar 

  32. Hung KY, Huang JW, Chen CT, Lee PH, Tsai TJ. Pentoxifylline modulates intracellular signalling of TGF-β in cultured human peritoneal mesothelial cells: implications for prevention of encapsulating peritoneal sclerosis. Nephrol Dial Transpl. 2003;18:670–6.

    Article  CAS  Google Scholar 

  33. Fang CC, Yen CJ, Chen YM, Chu TS, Lin MT, Yang JY, et al. Diltiazem suppresses collagen synthesis and IL-1β-induced TGF-β1 production on human peritoneal mesothelial cells. Nephrol Dial Transpl. 2006;21:1340–7.

    Article  CAS  Google Scholar 

  34. Hung KY, Chen CT, Huang JW, Lee PH, Tsai TJ, Hsieh BS. Dipyridamole inhibits TGF-β-induced collagen gene expression in human peritoneal mesothelial cells. Kidney Int. 2001;60:1249–57.

    Article  PubMed  CAS  Google Scholar 

  35. Io H, Hamada C, Ro Y, Ito Y, Hirahara I, Tomino Y. Morphologic changes of peritoneum and expression of VEGF in encapsulated peritoneal sclerosis rat models. Kidney Int. 2004;65:1927–36.

    Article  PubMed  CAS  Google Scholar 

  36. Yoshio Y, Miyazaki M, Abe K, Nishino T, Furusu A, Mizuta Y, et al. TNP-470, an angiogenesis inhibitor, suppresses the progression of peritoneal fibrosis in mouse experimental model. Kidney Int. 2004;66:1677–85.

    Article  PubMed  CAS  Google Scholar 

  37. Ro Y, Hamada C, Inaba M, Io H, Kaneko K, Tomino Y. Inhibitory effects of metalloproteinase inhibitor ONO-4817 on morphological alterations in chlorhexidine gluconate-induced peritoneal sclerosis rats. Nephrol Dial Transpl. 2007;22:2838–48.

    Article  CAS  Google Scholar 

  38. Di Paolo N, Sacchi G, Vanni L, Corazzi S, Terrana B, Rossi P, et al. Autologous peritoneal mesothelial cell implant in rabbits and peritoneal dialysis patients. Nephron. 1991;57:323–31.

    Article  PubMed  CAS  Google Scholar 

  39. Hekking LH, Harvey VS, Havenith CE, van den Born J, Beelen RH, Jackman RW, et al. Mesothelial cell transplantation in models of acute inflammation and chronic peritoneal dialysis. Perit Dial Int. 2003;23:323–30.

    PubMed  Google Scholar 

  40. Nagy JA, Shockley TR, Masse EM, Harvey VS, Hoff CM, Jackman RW. Systemic delivery of a recombinant protein by genetically modified mesothelial cells reseeded on the parietal peritoneal surface. Gene Ther. 1995;2:402–10.

    PubMed  CAS  Google Scholar 

  41. Hekking LH, Zweers MM, Keuning ED, Driesprong BA, de Waart DR, Beelen RH, et al. Apparent successful mesothelial cell transplantation hampered by peritoneal activation. Kidney Int. 2005;68:2362–7.

    Article  PubMed  Google Scholar 

  42. Sekiguchi et al. Roles of bone marrow-derived cells in development of morphological alterations in the peritoneum presented at the 11th Congress of the International Society for Peritoneal Dialysis, 25–26 August 2006, Hong Kong (submitted).

  43. Kaneko K, Hamada C, Tomino Y. Peritoneal fibrosis intervention. Perit Dial Intern. 2007;27(Suppl 2):582–6.

    Google Scholar 

  44. Hotta Y, Kaneko K, Inuma J, Inami Y, Aruga S, Shimaoka T, Sekiguchi Y, Io H, Hamada C, Obinata M, Ueda M, Tomino Y. Establishment of a peritoneal mesothelial cell line from a transgenic rat harbouring the temperature-sensitive simian virus 40 large T-antigen gene. Nephrol Dial Transpl. 2010;25:1825–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I sincerely thank my colleagues, especially Drs. Chieko Hamada and Kayo Kaneko, Hiroaki Io in the Division of Nephrology, Department of Internal Medicine at Juntendo University Faculty of Medicine, Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiko Tomino.

About this article

Cite this article

Tomino, Y. Mechanisms and interventions in peritoneal fibrosis. Clin Exp Nephrol 16, 109–114 (2012). https://doi.org/10.1007/s10157-011-0533-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-011-0533-y

Keywords

Navigation