Skip to main content

Advertisement

Log in

Enhanced expression of retinoic acid-metabolizing enzyme CYP26A1 in sunlight-damaged human skin

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Vitamin A deficiency (VAD) is associated with increased susceptibility to carcinogenesis. CYP26A1, the gene encoding a cytochrome P450 enzyme specifically involved in metabolic inactivation of retinoic acid (RA), the most active vitamin A derivative, has been shown to result in a state of functional VAD of the cell. Recently, we demonstrated that CYP26A1 efficiently promotes cell survival properties and eventually contributes to the carcinogenic process, implying roles as an oncogene. To clarify the possible association between VAD caused by CYP26A1 expression and the development of human epithelial neoplasia, we examined whether enhanced expression of CYP26A1 might be observed in various lesions of human skin. We report here that basal keratinocytes showed only weak positivity of CYP26A1 in sunlight-nonexposed areas, whereas strong positive staining was observed in skin from chronically sunexposed body areas and in epidermis that had the dysplastic changes known as actinic keratosis. However, we found no expression of constitutive CYP26A1 in skin malignancies such as squamous cell carcinomas. Our observation suggests an involvement of enhanced CYP26A1 expression causing a functional VAD state in skin that can potentially lead to neoplastic transformation of keratinocytes in an early phase during skin carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10:940–954

    PubMed  CAS  Google Scholar 

  2. Petkovich M (2001) Retinoic acid metabolism. J Am Acad Dermatol 45:S136–S142

    Article  PubMed  CAS  Google Scholar 

  3. Osanai M, Petkovich M (2005) Expression of the retinoic acid metabolizing enzyme, CYP26A1, limits programmed cell death. Mol Pharmacol 67:1808–1817

    Article  PubMed  CAS  Google Scholar 

  4. Osanai M, Nishikiori N, Murata M, Chiba H, Kojima T, Sawada N (2007) Cellular retinoic acid bioavailability determines epithelial integrity: role of retinoic acid receptor alpha agonists in colitis. Mol Pharmacol 71:250–258

    Article  PubMed  CAS  Google Scholar 

  5. Osanai M, Sawada N, Lee GH (2010) Oncogenic and cell survival properties of the retinoic acid metabolizing enzyme, CYP26A1. Oncogene 29:1135–1144

    Article  PubMed  CAS  Google Scholar 

  6. White JA, Backett-Jones B, Guo YD, Dilworth FJ, Bonasoro J, Jones G, Petkovich M (1997) cDNA cloning of human retinoic acid-metabolizing enzyme (hP450RAI) identifies a novel family of cytochromes P450. J Biol Chem 272:18538–18541

    Article  PubMed  CAS  Google Scholar 

  7. Abu-Abed S, Dolle P, Metzger D, Beckett B, Chambon P, Petkovich M (2001) The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev 15:226–240

    Article  PubMed  CAS  Google Scholar 

  8. Ozpolat B, Mehta K, Tari AM, Lopez-Berestein G (2002) All-transretinoic acid-induced expression and regulation of retinoic acid 4-hydroxylase (CYP26) in human promyelocytic leukemia. Am J Hematol 70:39–47

    Article  PubMed  CAS  Google Scholar 

  9. Shelton DN, Sandoval IT, Eisinger A, Chidester S, Ratnayake A, Ireland CM, Jones DA (2006) Up-regulation of CYP26A1 in adenomatous polyposis coli-deficient vertebrates via a WNT-dependent mechanism: implications for intestinal cell differentiation and colon tumor development. Cancer Res 66:7571–7577

    Article  PubMed  CAS  Google Scholar 

  10. Chang CL, Hong E, Lao-Sirieix P, Fitzgerald RC (2008) A novel role for the retinoic acid-catabolizing enzyme CYP26A1 in Barrett’s associated adenocarcinoma. Oncogene 27:2951–2960

    Article  PubMed  CAS  Google Scholar 

  11. Wolbach SB, Howe PR (1925) Tissue changes following deprivation of fat-soluble A vitamin. J Exp Med 43:753–777

    Article  Google Scholar 

  12. Ziegler A, Jonason AS, Leffell DJ, Simon JA, Sharma HW, Kimmelman J, Remington L, Jacks T, Brash DE (1994) Sunburn and p53 in the onset of skin cancer. Nature (Lond) 372:773–776

    Article  CAS  Google Scholar 

  13. Marks R (1995) An overview of skin cancers: incidence and causation. Cancer (Phila) 75:607–612

    Article  CAS  Google Scholar 

  14. Wang Z, Boudjelal M, Kang S, Voorhees JJ, Fisher GJ (1999) Ultraviolet irradiation of human skin causes functional vitamin A deficiency, preventable by all-trans retinoic acid pre-treatment. Nat Med 5:418–422

    Article  PubMed  CAS  Google Scholar 

  15. Fisher GJ, Datta SC, Talwar HS, Wang ZQ, Varani J, Kang S, Voorhees JJ (1996) Molecular basis of sun-induced premature skin aging and retinoid antagonism. Nature (Lond) 379:335–339

    Article  CAS  Google Scholar 

  16. LeBoit PE, Burg G, Weedon D, Sarasin A (2006) Pathology and genetics of skin tumours. International Agency for Research on Cancer Press, Lyon

    Google Scholar 

  17. Tobioka H, Isomura H, Kokai Y, Tokunaga Y, Yamaguchi J, Sawada N (2004) Occludin expression decreases with the progression of human endometrial carcinoma. Hum Pathol 35:159–164

    Article  PubMed  CAS  Google Scholar 

  18. Holick M (1995) Environmental factors that influence the cutaneous production of vitamin D. Am J Clin Nutr 61:638S–645S

    PubMed  CAS  Google Scholar 

  19. Fornace AI (1992) Mammalian genes induced by radiation; activation of genes associated with growth control. Annu Rev Genet 26:507–526

    Article  PubMed  CAS  Google Scholar 

  20. Campbell C, Quinn AG, Angus B, Farr PM, Rees JL (1993) Wavelength specific patterns of p53 induction in human skin following exposure to UV radiation. Cancer Res 53:2697–2699

    PubMed  CAS  Google Scholar 

  21. Park WS, Lee HK, Lee JY, Yoo NJ, Kim CS, Kim SH (1996) p53 mutations in solar keratosis. Hum Pathol 27:1180–1184

    Article  PubMed  CAS  Google Scholar 

  22. Loudig O, Babichuk C, White J, Abu-Abed S, Mueller C, Petkovich M (2000) Cytochrome P450RAI (CYP26) promoter: a distinct composite retinoic acid response element underlies the complex regulation of retinoic acid metabolism. Mol Endocrinol 14:1483–1497

    Article  PubMed  CAS  Google Scholar 

  23. Loudig O, Maclean GA, Dore NL, Luu L, Petkovich M (2005) Transcriptional co-operativity between distant retinoic acid response elements in regulation of Cyp26A1 inducibility. Biochem J 392(pt 1):241–248

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Osanai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osanai, M., Lee, GH. Enhanced expression of retinoic acid-metabolizing enzyme CYP26A1 in sunlight-damaged human skin. Med Mol Morphol 44, 200–206 (2011). https://doi.org/10.1007/s00795-010-0528-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-010-0528-x

Key words

Navigation