Skip to main content
Log in

Difference in redox behaviors between copper-binding octarepeat and nonoctarepeat sites in prion protein

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

We studied the redox behavior of copper-binding sites in prion protein (PrP) to clarify copper’s role in the pathological mechanism underlying prion diseases. We investigated the coordination structures, binding affinities, and redox potentials of copper-binding peptide fragments derived from the N-terminal domain of PrP by density functional theory calculations. We used four models for copper-binding moieties in PrP(60–96): two were derived from the PHGGGWGQ octapeptide repeat region of PrP(60–91), and the others were tripeptide Gly-Thr-His fragments derived from the copper-binding nonoctarepeat site around His96. We found that such PrP-derived copper-binding complexes exhibit conformationally dependent redox behavior; for example, the copper-binding complex derived from the octarepeat region tends to possess high reduction potential for the Cu(II)/Cu(I) couple, exceeding 0 V versus the standard hydrogen electrode, whereas the copper-binding nonoctarepeat model around His96 tends to possess high oxidation potential for the Cu(II)/Cu(III) couple and stabilize the higher-valent Cu(III) state. It is possible that such distinct redox activities of a copper-binding PrP are involved in the mechanism underlying prion diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DFT:

Density functional theory

PrP:

Prion protein

PrPC :

Normal cellular form of prion protein

PrPSc :

Scrapie isoform of prion protein

SHE:

Standard hydrogen electrode

SOD:

Superoxide dismutase

References

  1. Prusiner SB (1982) Science 216:136–144

    Article  CAS  PubMed  Google Scholar 

  2. Prusiner SB (1998) Proc Natl Acad Sci USA 95:13363–13383

    Article  CAS  PubMed  Google Scholar 

  3. Prusiner SB (ed) (2004) Prion biology and diseases. Cold Spring Harbor Press, New York

    Google Scholar 

  4. Millhauser GL (2007) Annu Rev Phys Chem 58:299–320

    Article  CAS  PubMed  Google Scholar 

  5. Viles JH, Klewpatinond M, Nadal RC (2008) Biochem Soc Trans 36:1288–1292

    Article  CAS  PubMed  Google Scholar 

  6. Hornshaw MP, McDermott JR, Candy JM (1995) Biochem Biophys Res Commun 207:621–629

    Article  CAS  PubMed  Google Scholar 

  7. Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H (1997) Nature 390:684–687

    Article  CAS  PubMed  Google Scholar 

  8. Bonomo RP, Imperllizzeri G, Pappalardo G, Rizzarelli E, Tabbì G (2000) Chem Eur J 6:4195–4202

    Article  CAS  Google Scholar 

  9. Bonomo RP, Cucinotta V, Giuffrida A, Impellizzeri G, Magrì A, Pappalardo G, Rizzarelli E, Santoro AM, Tabbì G, Vagliasindi LI (2005) Dalton Trans 150–158

  10. Hasnain SS, Murphy LM, Strange RW, Grossmann JG, Clarke AR, Jackson GS, Collinge J (2001) J Mol Biol 311:467–473

    Article  CAS  PubMed  Google Scholar 

  11. Burns CS, Aronoff-Spencer E, Legname G, Prusiner SB, Antholine WE, Gerfen GJ, Peisach J, Millhauser GL (2003) Biochemistry 42:6794–6803

    Article  CAS  PubMed  Google Scholar 

  12. Jones CE, Abdelraheim SR, Brown DR, Viles JH (2004) J Biol Chem 279:32018–32027

    Article  CAS  PubMed  Google Scholar 

  13. Klewpatinond M, Viles JH (2007) Biochem J 404:393–402

    Article  CAS  PubMed  Google Scholar 

  14. Burns CS, Aronoff-Spencer E, Dunham CM, Lario P, Avdievich NI, Antholine WE, Olmstead MM, Vrielink A, Gerfen GJ, Peisach J, Scott WG, Millhauser GL (2002) Biochemistry 41:3991–4001

    Article  CAS  PubMed  Google Scholar 

  15. Valensin D, Luczkowski M, Mancini FM, Legowska A, Gaggelli E, Valensin G, Rolka K, Kozlowski H (2004) Dalton Trans 1284–1293

  16. Chattopadhyay M, Walter ED, Newell DJ, Jackson PJ, Aronoff-Spencer E, Peisach J, Gerfen GJ, Bennett B, Antholine WE, Millhauser GL (2005) J Am Chem Soc 127:12647–12656

    Article  CAS  PubMed  Google Scholar 

  17. Jones CE, Klewpatinond M, Abdelraheim SR, Brown DR, Viles JH (2005) J Mol Biol 346:1393–1407

    Article  CAS  PubMed  Google Scholar 

  18. Davies P, Brown DR (2008) Biochem J 410:237–244

    Article  CAS  PubMed  Google Scholar 

  19. Brown DR, Wong B-S, Hafiz F, Clive C, Haswell SJ, Jones IM (1999) Biochem J 344:1–5

    Article  CAS  PubMed  Google Scholar 

  20. Wong B-S, Pan T, Liu T, Li R, Petersen RB, Jones IM, Gambetti P, Brown DR, Sy M-S (2000) Biochem Biophys Res Commun 275:249–252

    Article  CAS  PubMed  Google Scholar 

  21. Viles JH, Cohen FE, Prusiner SB, Goodin DB, Wright PE, Dyson HJ (1999) Proc Natl Acad Sci USA 96:2042–2047

    Article  CAS  PubMed  Google Scholar 

  22. Nadal RC, Abdelraheim SR, Brazier MW, Rigby SEJ, Brown DR, Viles JH (2007) Free Radic Biol Med 42:79–89

    Article  CAS  PubMed  Google Scholar 

  23. Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Nature 362:543–546

    Article  CAS  PubMed  Google Scholar 

  24. Brown DR, Schmidt B, Kretzschmar HA (1996) Nature 380:345–347

    Article  CAS  PubMed  Google Scholar 

  25. Florio T, Paludi D, Villa V, Principe DR, Corsaro A, Millo E, Damonte G, D’Arrigo C, Russo C, Schettini G, Aceto A (2003) J Neurochem 85:62–72

    Article  CAS  PubMed  Google Scholar 

  26. Jobling MF, Huang X, Stewart LR, Barnham KJ, Curtain C, Volitakis I, Perugini M, White AR, Cherny RA, Masters CL, Barrow CJ, Collins SJ, Bush AI, Cappai R (2001) Biochemistry 40:8073–8084

    Article  CAS  PubMed  Google Scholar 

  27. Turnbull S, Tabner BJ, Brown DR, Allsop D (2003) Neurosci Lett 336:159–162

    Article  CAS  PubMed  Google Scholar 

  28. Pushie MJ, Rauk A, Jirik FR, Vogel HJ (2009) Biometals 22:159–175

    Article  CAS  PubMed  Google Scholar 

  29. Mangé A, Béranger F, Peoc’h K, Onodera T, Frobert Y, Lehmann S (2004) Biol Cell 96:125–132

    Article  PubMed  CAS  Google Scholar 

  30. Stańczak P, Kozłowski H (2007) Biochem Biophys Res Commun 352:198–202

    Article  PubMed  CAS  Google Scholar 

  31. Bergström A-L, Chabry J, Bastholm L, Heegaard PMH (2007) Biochim Biophys Acta 1774:1118–1127

    PubMed  Google Scholar 

  32. Hureau C, Charlet L, Dorlet P, Gonnet F, Spadini L, Anxolabéhère-Mallart E, Girerd J-J (2006) J Biol Inorg Chem 11:735–744

    Article  CAS  PubMed  Google Scholar 

  33. Hureau C, Mathé C, Faller P, Mattioli TA, Dorlet P (2008) J Biol Inorg Chem 13:1055–1064

    Article  CAS  PubMed  Google Scholar 

  34. Parsons R (1974) Pure Appl Chem 37:499–516

    Article  CAS  Google Scholar 

  35. Trasatti S (1986) Pure Appl Chem 58:955–966

    Article  CAS  Google Scholar 

  36. Winget P, Cramer CJ, Truhlar DG (2004) Theor Chem Acc 112:217–227

    Article  CAS  Google Scholar 

  37. Baik M-H, Friesner RA (2002) J Phys Chem A 106:7407–7412

    Article  CAS  Google Scholar 

  38. Yamamoto N, Kuwata K (2009) J Mol Struct (Theochem) 895:52–56

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision D.01. Gaussian, Wallingford

  40. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  41. Bonomo RP, Impellizzeri G, Pappalardo G, Purrello R, Rizzarelli E, Tabbì G (1998) J Chem Soc Dalton Trans 3851–3857

  42. Wong B-S, Pan T, Liu T, Li R, Gambetti P, Sy M-S (2000) Biochem Biophys Res Commun 273:136–139

    Article  CAS  PubMed  Google Scholar 

  43. Hutter G, Heppner FL, Aguzzi A (2003) Biol Chem 384:1279–1285

    Article  CAS  PubMed  Google Scholar 

  44. Jones S, Batchelor M, Bhelt D, Clarke AR, Collinge J, Jackson GS (2005) Biochem J 392:309–312

    Article  CAS  PubMed  Google Scholar 

  45. Pattison IH, Jebbett JN (1971) Nature 230:115–117

    Article  CAS  PubMed  Google Scholar 

  46. Zatta P, Raso M, Zambenedetti P, Wittkowski W, Messori L, Piccioli F, Mauri PL, Beltramini M (2005) Cell Mol Life Sci 62:1502–1513

    Article  CAS  PubMed  Google Scholar 

  47. Messori L, Casini A, Gabbiani C, Sorace L, Muniz-Miranda M, Zatta P (2007) Dalton Trans 2112–2114

  48. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO) and by a Grant-in-Aid for Young Scientists (B) from the Ministry of Education, Culture, Sports, Science and Technology (no. 20750008). The numerical calculations were performed using the Research Center for Computational Science (RCCS), National Institute of Natural Sciences (NINS), Okazaki, Japan, and the Information Technology Center, Nagoya University, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Kuwata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, N., Kuwata, K. Difference in redox behaviors between copper-binding octarepeat and nonoctarepeat sites in prion protein. J Biol Inorg Chem 14, 1209–1218 (2009). https://doi.org/10.1007/s00775-009-0564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0564-y

Keywords

Navigation